

AN ANALYSIS OF INTERLAMINAR STRESS GRADIENTS AND IMPACT DAMAGE IN GRAPHITE-EPOXY LAMINATES

E. L. Stanton and L. M. Crain
PROTOTYPE DEVELOPMENT ASSOCIATES, INC.
1740 Garry Avenue
Santa Ana, California 92705

March 1980

Final Report Under Contract No. N62269-77-C-0144

Approved for Public Release; Distribution Unlimited.

DE THE COPY

~

3

AD A 088

Prepared for NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974

80 8 26 10

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE	OFFICE OR DIRECTORATE
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptroller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
70	Planning Assessment Resources
80	Engineering Support Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY:	Elter	DATE:	5/28/80	
	J. STURM			
•	CDR USN			

	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
	(19) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
18)	NADC+80135-60 2. GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
(0)	a. TITLE (and Subtitle)	ATTYPE SE MEDIA PERIOD COVERED
	AN ANALYSIS OF INTERLAMINAR STRESS GRADIENTS AND	Final Report
7	IMPACT DAMAGE IN GRAPHITE-EPOXY LAMINATES	JAN 1977 to JAN 1978
L-	[/ (K)	DRT DOCUMENTATION PAGE Separation Separ
و معالم	7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(1)
(10	E. L. Stanton and L. M. Crain) N62269-77-C-Ø144
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	
	Prototype Development Associates, Inc. 1740 Garry Avenue	
	Santa Ana, CA 92705	(\mathcal{T})
	11. CONTROLLING OFFICE NAME AND ADDRESS	
	Aircraft and Crew Systems Technology Directorate	
	Naval Air Development Center Warminster, PA 18974	
	14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	(12)86	UNCLASSIFIED
	700	154 DECLASSIFICATION DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
	18. SUPPLEMENTARY NOTES	
	19. KEY WORDS (Continue on reverse side if nacessary and identify by block number)	
\		
	ABSTRACT (Continue on reverse side if necessary and identify by block number)	
,	Interlaminar stress gradients caused by an interna impact are analyzed using 3D finite elements. The laminate warps out-of-plane under biaxial compress ients. A much thicker 48 ply laminate [±45/02/±45] for impact by a steel sphere that strikes the lamin surface shear stresses occur around the perimeter sinusoidal distribution. These results were obtain program with new constraint elements for modeling	disbonded [0/±45/02//-45/45/0] ion without large stress grad- /02/±45/0/90]28 is analyzed nate off-center. Large sub- of the contact area with a ned using the PATCHES-III
	DD . 1473 EDITION OF ! NOV 65 IS OBSOLETE	x + 6) -

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

NADC-80135

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.	INTRODUCTION AND SUMMARY	1
2.	INTERLAMINAR STRESS FINITE ELEMENT MODELING	3
	 2.1 3D Composite Properties for Laminate Force- Deformation Behavior 2.2 Constraint Finite Elements 2.3 Interlaminar Modeling 	3 10 11
3.	DISBONDED LAMINATE ANALYSIS	17
	3.1 Prototype Models3.2 Laminate Finite Element Models3.3 Disbonded Laminate Results	17 22 25
4.	LAMINATE IMPACT ANALYSES	31
	4.1 Thick Laminate Composite Response4.2 Impact Site Model4.3 Interlaminar Impact Stress Results	31 34 36
5.	CONCLUSIONS AND RECOMMENDATIONS	43
6.	REFERENCES	45
Appendix		A-1

NADC-80135-60

LIST OF FIGURES

<u>Figure</u>		Page
1.	PC Property Modeling Limits	7
2.	Interlaminar Normal Stress Comparisons	13
3.	PATCHES-III Transition Model for Interlaminar Stress Analysis	15
4.	Disbonded Laminate Schematic Using Diagonal Symmetry	15
5.	Two-Ply Disbond Prototype Model for Forces	20
6.	Interply Forces: [0/-45] Uniaxial Load	21
7.	Interply Forces: [0/45] Uniaxial Load	21
8.	Unbalanced Laminate Bending Displacements	23
9.	Normal Deformations in the Plies Adjacent to the Disbond	26
10.	Bottom Ply Shear Stress Changes	27
11.	Thick Laminate Impace Schedule	32
12.	Laminate Structural Response PATCHES-III Model	33
13.	Impact Site PATCHES-III Model	35
14.	Centerline Fiber Stress	37
15.	Cartesian Centerline Shear Strains	38
16.	Fiber Stresses Around Impact Perimeter	40
17.	Transverse Shear Stresses Around Impact Perimeter	40
18.	Ply Shear Stress Around Impact Perimeter	41
19.	Thick Laminate Local Bending Deformation Comparisons	42

NADC-80135-60

LIST OF TABLES

Table		Page
1.	Three-Ply Laminate Force-Deformation Properties	8
2.	Three-Ply Laminate Deformation-Force Properties	8
3.	Parametric Cubic Laminate Property Model	9
4.	Force-Deformation Comparisons	9
5.	PATCHES-III Finite Element Additions	10
6.	Interlaminar Normal Stress Comparisons	12
7.	Interlaminar Shear Stress Comparisons	14
8.	Graphite-Epoxy Nominal Elastic Properties	24
9.	Bonded Laminate Constraint Forces Through the Thickness at $r = 0$	24
10.	Disbonded Laminate Energy Change	25
11.	Disbonded Laminate Constraint Force Changes Through the Thickness at $r = 0$	27
12.	Disbonded Laminate Constraint Force Changes Through the Thickness at r = R	28
13.	Parametric Cubic Thick Laminate Property Model	34
14.	Thick Laminate Ply Stress Summary	41

LIST OF SYMBOLS

<u>Letter</u>	<u>Definition</u>
(A _n) _{ij}	Integrated ply property moments; $n = 0,1,2$.
B i a	Composite stress-curvature stiffness constants from classical 3D lamination theory.
Č _{ij}	Composite stress-strain stiffness constants from classical 3D lamination theory.
C [*] ij(ξ)	Composite stress-strain parametric stiffness coefficients for 3D finite element laminate modeling.
CCL, etc.	Three character mnemonic defining 3D finite elements where $C = \text{cubic}$, $L = \text{linear}$ indicate displacements in the coordinate directions associated with the character position.
$\bar{D}_{\alpha\beta}$	Composite moment-curvature stiffness constants from classical 3D lamination theory.
e ~i	Orthonormal Cartesian bases vectors.
E _{ij}	Orthotropic material extensional moduli.
F ₁ (ξ)	Parametric cubic Hermite functions.
G _{ij}	Orthotropic material shear moduli.
P ijk	Tricubic Hermite coefficients in point format.
R,r	Radial coordinate.
$S_{ij}^{\star}(\xi)$	Composite strain-stress parametric flexibility coefficients for 3D finite element laminate model.
S _m	Cubic Hermite coefficients in algebraic format.
T _{mn}	Point format cubic transformation matrix.
Z _i	Cartesian coordinate.
Greek Letter	Definition
δ _i	Coefficients in the solution of the contact problem for transversely isotropic materials.
ϵ_{i}^{\star}	Composite strain component.
κ _α	Laminate curvatures in the surface coordinate directions of the composite material.

<u>Greek Letter</u>	<u>Definition</u>
ν _{ij}	Orthotropic material Poisson ratios.
$\sigma_{\mathbf{i}}^{\star}$	Composite stress component.
ξį	Parametric coordinate $0 \le \xi_i \le 1$.

INTRODUCTION AND SUMMARY

The sensitivity of laminates to low velocity impact damage is a practical design problem that the ASTM and others have been investigating for several years. One of the difficulties in studying impact response is predicting the complex interlaminar stress gradients that it produces in composite structures. This report presents a systematic approach to interlaminar stress gradient modeling with applications to a graphite-epoxy laminate impacted by a steel sphere and a laminate with an internal disbond. The approach is based on a family of variable property finite elements for laminate models that transition to discrete ply models for regions with interlaminar stress gradients. All 45 elastic constants for a general anisotropic laminate are simulated and considerable error is shown to occur when uniform properties are used with certain laminate models. Careful modeling of the force-deformation behavior is required to predict accurate boundary conditions in the impact region when bending is present. Numerical results are presented for a thin 8 ply laminate and a thick 48 ply laminate.

The report first develops two new finite element modeling tools for interlaminar stress analysis and validates them using control problems with known solutions. The new analysis tools are composite property models that vary through the thickness to correctly model bending and linear element constraints for lamination theory force-deformation modeling. These tools are then used to analyze a thin laminate with an internal disbond and a thick laminate impacted at low velocity by a steel sphere. The disbond produces a locally unbalanced laminate that under biaxial compression warps badly with large out-of-plane displacements, but with very little internal force redistribution. These results were obtained from a model using two planes of symmetry that were found to introduce ficticious constraint forces between 0 and 45 degree plies at the laminate center. Results for the laminate impact problem were obtained from a complete 360 degree model of the impact site. A structural model of the entire laminate was used to obtain displacement boundary conditions for a discrete model of the impact site. These results show large subsurface shears at the perimeter of the contact area in the second ply below the surface. Only the top four plies were modeled individually to reduce costs, but more detailed models were prepared for later solution.

2. INTERLAMINAR STRESS FINITE ELEMENT MODELING

Recently finite element modeling approaches have been suggested for the determination of interlaminar stresses in those problems that cannot be solved using lamination theory [1,2,3]. All of these involve some form of ply-by-ply modeling and an appeal to St. Venants principle to allow a transition to composite laminate modeling away from the region of interlaminar stress gradients. The issues affecting the accuracy and efficiency of computational models for this class of problems are reviewed in this section and a sysematic approach is presented for use with PATCHES-III. First a variable property simulation of laminate force-deformation behavior is introduced that can represent all 45 elastic constants necessary to characterize general anisotropic laminate deformations [4]. Next a family of linear constraint finite elements are developed from the PATCHES-III tricubic finite element to model the deformations of general laminates. The final and critical development for interlaminar stress gradient analysis is a procedure to transition from discrete 3D ply modeling to 2D+ composite laminate modeling. The features of this new system are then tested using the edge effect demonstration problem and a collection of balanced and unbalanced laminate problems.

2.1 3D COMPOSITE PROPERTIES FOR LAMINATE FORCE-DEFORMATION BEHAVIOR

Pagano [3] has shown that the forces and moments in a general anisotropic laminate are related to laminate strains and curvatures by 45 elastic constants in the equations

$$\sigma_{\mathbf{i}}^{\star} = \overline{C}_{\mathbf{i}\mathbf{j}} \varepsilon_{\mathbf{j}}^{\star} + \overline{B}_{\mathbf{i}\alpha} \kappa_{\alpha}
M_{\beta}/h^{2} = \overline{B}_{\mathbf{j}\beta} \varepsilon_{\mathbf{j}}^{\star} + \overline{D}_{\beta\alpha} \kappa_{\alpha}$$

$$\uparrow \leq \mathbf{i}, \mathbf{j} \leq 6
\text{for}
\alpha, \beta = 1, 2, 4$$
(2.1)

which the PATCHES-III contracted convention is used with ϵ_4 defined as the in-plane shear strain. These equations reduce to the classical plate theory for laminates with monoclinic plies when σ_3 = 0. Once the volume average strains ϵ_i^* and laminate curvatures κ_α have been found, the individual ply stresses can be determined using ply properties C_{ij} and the relations developed by Pagano [4].

The elastic constants in Equation (2.1) are functions of the integrated moments of the ply properties

$$\left[(A_0)_{ij}, (A_1)_{ij}, (A_2)_{ij} \right] = \int_{-h/2}^{h/2} \left[1, z_3, z_3^2 \right] C_{ij}(z_3) dz_3 \qquad (2.2)$$

where the exact expressions for the \bar{c}_{ij} , $\bar{B}_{i\alpha}$, $\bar{D}_{\alpha\beta}$ involve transformations arising from the assumption σ_3 , σ_5 , and σ_6 are each constant through the thickness. The approach developed in the present study uses these same moments to define a variable property composite material in the thickness direction with the same force-deformation behavior. When a finite element of this material is subject to the same volume average strains, ϵ_i , and curvatures κ_α as a laminate modeled using Equation (2.1), the same stress resultants will be produced. The converse of this will not be true in general unless displacement constraints are introduced in the thickness direction to prevent a pseudo edge effect from warping the cross-section. In this study, a linear displacement constraint in the thickness direction is used with the variable property model to define a CCL finite element that predicts the force-deformation behavior of Equation (2.1).

Consider a parametric cubic model for the property variation in the normal direction. This allows up to a sixth degree polynomial in Z_3 when the thickness coordinate function, $Z_3(\xi)$, is also cubic. However, the use of nonuniform geometry models to aid in composite property modeling while feasible [Ref. 5] is not very convenient as it requires solving nonlinear equations. The use of a uniform (i.e., linear) geometry model for $Z_3(\xi)$,

$$Z_3(\xi) = h(\xi - 1/2)$$
 (2.3)

and a parametric cubic for each elastic constant in the thickness direction,

$$C_{ij}^{*}(\xi) = (S_{m})_{ij}^{*} \xi^{4-m} \quad \text{for } 1 \le m \le 4$$
 (2.4)

is adequate for most laminates. In some extreme cases, it may be necessary to use nonuniform geometry modeling to avoid unreasonable values of $C_{ij}^{\star}(\xi)$ at local points through the thickness. However, it is always possible using

uniform models to match the integrated moments in Equation (2.2) which is the essential requirement for finite element modeling. Substituting this property model into Equation (2.2) results in four linear equations

$$(A_n)_{ij} = h^{n+1} \int_0^1 (\xi - 1/2)^n \xi^{4-m} d\xi(S_m)_{ij}$$

for
$$0 \le n \le 3$$

 $1 \le m \le 4$ (2.5)

These can be expressed in matrix form

$$A_{n} = T_{nm} S_{m} \tag{2.6}$$

for any component of $C_{ij}(\xi)$ where

$$T_{nm} = \begin{bmatrix} h/4 & , h/3 & , h/2 & , h \\ 3h^2/40 & , h^2/12 & , h^2/12 & , 0 \\ 7h^3/240 & , h^3/30 & , h^3/24 & , h^3/12 \\ 13h^4/1120 & , h^4/80 & , h^4/80 & , 0 \end{bmatrix}$$
(2.7)

In the special case of a homogeneous laminate, $A_1 = A_3 = 0$ with $A_2 = A_0h^2/12$, the solution of Equation (2.6) results in simply $C_{ij}^*(\xi) = (A_0)_{ij}/h$ as it must. It is possible to simulate A_0, A_1, A_2 with only a quadratic, but the use of the full cubic reduces the number of pathological cases for which $C_{ij}^*(\xi)$ may not be positive definite at all points through the thickness. It is important to note that this is strictly an interpolation problem that can be avoided at the expense of using more interpolation functions.

At this point, there are two issues to be resolved before the approach can be used. First, does the model accurately represent laminate force-deformation behavior, and secondly is there any significant difference with simple constant property models based on the rule of mixtures? The unbalanced laminate analyzed by Pagano [4] for uniaxial loading is used to answer both questions and to illustrate the practical limits of a uniform PC property model.

NADC-80135-60

Consider the three-ply laminate [60/0/-60] with ply properties

$$C_{11}$$
 = 210.35 GPa C_{22} = C_{33} = 22.30 GPa C_{12} = C_{13} = 7.01 GPa C_{23} = 5.75 GPa C_{44} = C_{55} = 10.34 GPa C_{66} = 4.14 GPa

as taken from Pagano [2.4] where the msi units of that paper are retained for comparison. These ply properties result in the force-deformation properties shown in Table 1 and their inverse shown in Table 2. Under uniaxial load, for example, the laminate twists and stretches with the deformations given by the corresponding column in Table 2. Consider now the representation of this behavior using $C_{ij}^{*}(\xi)$ determined from Equation (2.6). These property functions in PC point format are displayed in Table 3. Note that the extensional moduli were not determined from Equation (2.6), but are the same constants as in Table 1. The reason for this is evident in Figure 1 which shows the PC function for $C_{11}^{\star}(\xi)$. The discrete ply C_{11} properties vary so sharply that their standard deviation, 14.59, is larger than their mean value, 13.66. To represent A_0 , A_1 , and A_2 in this case, a uniform PC function must overshoot zero near the upper and lower surfaces which if used would violate positive definite C_{ii} requirements at these points. To avoid this, only A_0 and A_1 were simulated by the property model in Table 3, and as a result the bending-curvature properties $(M_1, M_2 \text{ loading})$ are not correct. All other force-deformation properties should be exact, and in particular the uniaxial case analyzed by Pagano, σ_1^\star = 1, should be modeled correctly. This was tested using one CCL element in PATCHES-III with Table 3 material properties and loaded by a uniform pressure on opposite faces. The computed laminate strains, ϵ_i^* , and curvatures κ_1 , κ_2 , κ_4 were the same as the Pagano results, Table 4. The results from a unit moment, $M_1 = 1.0$, case are also compared in Table 4, and these deformations are much too low. The bending errors are a direct consequence of the bending stiffness error caused by using constant C_{11} and C_{22} properties from the rule-of-mixtures. In this laminate, [60/0/-60], the stiffness error is over 100 percent, and even in a balanced structural laminate, errors of 10 percent to 20 percent are common.

Consider as an example of this behavior the 48 ply laminate analyzed later in this report. The property distribution (c.f. page 34) shows variable

C14 and C24 coupling through the thickness. This is necessary to account for the bending-shearing coupling $(A_2)_{14}$ and $(A_2)_{24}$ in this laminate which is quite strong. Note that representing this behavior is important to correctly predict the 3D deformation response of the laminate in areas of high local bending.

Figure 1. PC Property Modeling Limits

NADC-80135-60

TABLE 1. THREE-PLY LAMINATE FORCE-DEFORMATION PROPERTIES $(10^6\ PSI)$

	ε,	ε*2	ε <mark>*</mark>	ε <mark>*</mark>	ε <mark>*</mark>	ε <mark>*</mark>	к*	×*2	κ <mark>*</mark>
σ *	13.656	4.232	0.925						-0.694
o* 2		13.656	0.925						-1.930
* * * 3			3.234						-0.018
*4 *5 *6 *1				4.712			-0.689	-1.925	
* 5					0.857				
[*] 6		(SYM)				0.857			
							0.494	0.450	
12								1.500	
1 [*] 2 1 [*] 4									0.512

TABLE 2. THREE-PLY LAMINATE DEFORMATION-FORCE PROPERTIES

	σ *	σ *	σ *	♂ *	σ *	σ *	M *	M 2	M *
ε,	0.082	018	018						0.042
ε <mark>*</mark>		0.167	039						0.602
			0.325						0.160
ε*3 ε*4 ε*5 ε*6 *1				0.453			0.141	0.439	
ε <mark>*</mark> 5					1.167				
ε <mark>*</mark>		(SYM)				1.167			
κ *							2.829	668	
** 2								1.559	
[⋆] 2 [⋆] 4									4.272

TABLE 3. PARAMETRIC CUBIC LAMINATE PROPERTY MODEL*

	C* _{ij} (0)	C* _{ij} (1/3)	C [*] ij(2/3)	C* _{ij} (1)
C ₁₁	13.658	13.658	13.658	13.658
c ₁₂	4.231	4.231	4.231	4.231
c ₁₃	.926	.926	.926	.926
C ₁₄	3.084	1.827	-1.827	-3.084
c ₂₂	13.658	13.658	13.658	13.658
c ₂₃	.926	.926	.926	.926
C ₂₄	8.581	5.085	-5.085	-8.581
C ₃₃	3.234	3.234	3.234	3.234
C ₃₄	. 078	. 046	046	078
C ₄₄	8.284	3.523	3.523	8.284
C ₅₅	. 550	1.217	1.217	.550
C ₅₆	.385	.228	228	385
c ₆₆	1.550	.833	.833	1.550

^{*}Only extensional force-deformation properties simulated.

TABLE 4. FORCE-DEFORMATION COMPARISONS

	ε*	ε*	ε <mark>*</mark>	ε*	κ ₁	к ₂	^к 4
Exact $(\sigma_1^* = 1)$.0823	0184	0184	.0	.0	.0	.0416
$CCL (\sigma_1^* = 1)$.0822	0184	0180	.0	.0	.0	.0415
Exact $(M_1^* = 1)$.0	.0	.0	.141	2.829	668	.0
CCL $(M_1^* = 1)$.0	.0	.0	.065	.978	193	.0

^{*}Only extensional force-deformation properties simulated.

2.2 CONSTRAINT FINITE ELEMENTS

The CCL finite element used to model laminate force-deformation behavior is one of a family of linear constraint options developed for the PATCHES-III program. The need for low cost modeling in regions of uniaxial or biaxial strain was noted in an earlier report [6] and the new elements in Table 5 provide this capability. They are based on the linear constraints defined in Equation (2.8)

$$P_{i} = T_{i\alpha} P_{\alpha}$$
 $i = 1,2,3,4$ $\alpha = 1,4$ (2.8)

where the coefficients $T_{i\alpha}$ are simply

$$T_{i} = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1/3 & 1/3 \\ 1/3 & 2/3 & 0 & 1 \end{bmatrix}$$
 (2.9)

The same coefficients apply to all three parametric coordinates and, in general,

$$P_{ijk} = T_{i\alpha} T_{i\beta} T_{ky} P_{\alpha\beta\gamma}$$
 (2.10)

If constraints are introduced in only two coordinates,

$$P_{ijk} = T_{i\alpha} T_{j\beta} \delta_{k\ell} P_{\alpha\beta\ell}$$
 (2.11)

and for only one constraint

$$P_{ijk} = T_{i\alpha} \delta_{jk} \delta_{km} P_{\alpha \ell m}$$
 (2.12)

TABLE 5. PATCHES-III FINITE ELEMENT ADDITIONS

Displacements*	Nodes	Geometry	Properties
LLL	8	ccc	ccc
LLC	16	CCC	CCC
LCC	32	CCC	CCC
CCC	64	CCC	CCC

^{*}Any combination of L and C is available; L = Linear, C = Cubic.

Two key issues affecting the development of the new family of elements are how to efficiently generate their stiffness matrices and how to connect them to each other. After some early confusion, it was determined that all linear constraints can be applied before integration with the same result as when they are applied after integration. This greatly reduces the cost of generating their stiffness matrices. It is simple to demonstrate this equivalence in one dimension where obviously

$$K_{\alpha\beta}^{P} = \int T_{i\alpha} F_{i}(\xi) F_{j}(\xi) T_{j\beta} d\xi$$

$$= T_{i\alpha} \int F_{i}(\xi) F_{j}(\xi) d\xi T_{j\beta}$$

$$= T_{i\alpha} K_{i,i}^{P} T_{j,i\beta} \qquad (2.13)$$

but in higher dimensions interpolatory quadrature is used in PATCHES-III and this caused some concern at first.

The second issue was resolved by automating the generation of interface constraints between elements of different dimension. This allows the user of PATCHES-III to specify linear constraints on any element or group of elements by simply placing a mnemonic of the type listed in Table 5 on the connectivity card for that element. The program first generates all explicit mesh point constraints and then on a second pass generates all interface or implicit constraints. This requires extensive checking for conflicts, and in order to reduce their incidence, all three displacement components are constrained alike. At every constrained mesh point, one of the Equations (2.10)-(2.12) is automatically generated and applied to all affected matrices.

2.3 INTERLAMINAR MODELING

The use of substructuring to transition from discrete ply molding to composite laminate modeling was recently investigated by Wang and Crossman [2]. The same technique has been used for other composites under the name "minimechanics" [7] and, of course, it has been used for years in aircraft structural analysis. Substructuring in the case of laminates must account for two transition conditions: one along a plane defined by a ply, and the other along a plane normal to the laminate. The first case requires no transition in the shape of the finite element mesh and appears to work well for edge

effects caused by uniaxial loading [2]. Substructuring for the second case will require mesh changes, as well as the transition to composite properties. An approach using the new CCL finite element with laminate properties is evaluated in this section.

Consider the interlaminar stress problem analyzed in the PATCHES-III User's Manual. First, the accuracy of the new constraint finite elements will be demonstrated for the same four element model using the original properties. The two interior elements were constrained to be all linear (LLL) and the two edge elements were constrained linear in the direction of the load (LCC). No significant change in the earlier results should occur because the displacement solution has the same form in these regions. Normal stress comparisons in Table 6 show this to be true even though the model has been reduced to only 92 degrees-of-freedom. In fact, the assumption of linear displacements in the thickness direction (LCL) also was used with very little mid-surface normal stress error as comparisons in Figure 2 show. Interlaminar stress gradients between the $0^{\rm O}$ and $90^{\rm O}$ plies, however, are drastically changed in the LCL model as the shear stress comparisons in Table 7 show. Note that the interlaminar shear stress appears to contain a singularity at the free-edge between the 00 and 90^{0} plies, σ_{23} (o,b,h). The uniform mesh model gives the mean value of σ_{23} , but one element cannot model this response and return to zero at the freeedge. A nonuniform mesh element does a better job of matching this condition and produces about as much accuracy as can be expected from a single LCC element.

TABLE 6. INTERLAMINAR NORMAL STRESS COMPARISONS*

ξ/2h**	CCC/CCC	LLL/LCC	LLL/LCL
	(428 D.O.F.)	(92 D.O.F.)	(44 D.O.F.)
0 1/3 2/3 1 2 3	+2.95 26 43 16 02 + .01	+2.89 27 44 05 03 01 + .02	+2.76 31 25 03 03 00 02

^{*}Comparisons at midsurface between 90° plies. ** $Z_2 = b - \xi$; distance from free-edge.

Figure 2. Interlaminar Normal Stress Comparisons

TABLE 7. INTERLAMINAR SHEAR STRESS COMPARISONS*

ξ/2h	CCC/CCC Uniform	LLL/LCC Uniform	LLL/LCL Uniform	ξ/ 2 h	LLL/LCC Nonuniform**
0	-2.72	-2.72	33	0	+ .58
1/3	85	85	47	1/9	-1.94
2/3	60	60	42	4/9	67
i	+ .03	+ .03	+.03	ì	31
2	05	05	04	2	03
3	02	02	02	3	02
4	.00	.00	.00	4	.00

^{*}Comparisons between 90° and 0° plies. **Z $_2$ = 6 + 4 ξ - 2 ξ 2 (edge elements only).

Consider now the transition from discrete ply properties to a composite property model C_{ij}^* away from the free-edge. A six element model shown in Figure 3 was used to determine model accuracy when transitions of this type are made using the present constraint finite elements. Note the two edge elements are exactly as before, and the transition mesh uses three wedge shaped elements. Rule-of-mixture composite properties were used for elements number one and three, and all other elements use local ply properties as in the original model. The interlaminar stresses at the free edge changed very little, Figure 2. At the interface, of course, small local shear stresses occur because of the discrete change in properties. Their maximum value is less than one-half of one percent the applied axial stress. Essentially, the same results were obtained using $C_{i,j}^{\star}(\xi)$ variable composite properties. Interestingly, the two ply laminate properties were easier to model with a cubic than the three ply laminate because the [0/90] properties are an odd function. These results indicate the transition from discrete ply modeling to composite laminate modeling can be made using the new constraint elements.

ELEMENT DISPLACEMENTS		PROPERTIES
1	LCC	LAMINATE , LLC
2	LCC	PLY , 90°
3	LCC	LAMINATE , LLC
4	LCC	PLY , 00
5	LCC	PLY , 90°
6	LCC	PLY , 00

Figure 3. PATCHES-III Transition Model for Interlaminar Stress Analysis

3. DISBONDED LAMINATE ANALYSIS

The effects of an unsymmetric disbond on laminate deformations and associated internal load redistributions around the disbond are investigated for a thin laminate. An important aspect of the unsymmetrically disbonded laminate problem <u>not</u> considered in the present investigation is the effect of laminate thickness. There is considerable experimental evidence, Williams [8, 9], that the strength of thick laminates (~50 plies or more) is sensitive to internal disbonds in both unidirectional tape and bidirectional fabric materials of graphite-epoxy. These remarks refer to compressive not tensile loads and to disbonds between plies that occur without fiber damage. Results from the present investigation suggest thin laminates (~10 plies or less) will experience a loss in stiffness caused by out-of-plane bending before any stress critical failure. The laminate in this study is an eight ply graphite-epoxy flat panel with a small circular disbond ($T/R \cong 0.1$) located three plies from the surface and at the center of the panel. A ply-by-ply modeling of this problem is used to study interlaminar force-deformation behavior in the vicinity of the disbond with CCL finite elements. No attempt was made to include in the model any strain singularities that might exist, although this could have been done had fracture mechanics been the focus of the study. The objective was to determine the deformations and internal load redistribution caused by an unsymmetric disbond in a compressively loaded thin laminate.

The disbonded laminate problem was analyzed early in the study using symmetry boundary conditions on two planes. Prototype models indicated a definite skewed displacement response would occur and that the use of symmetry planes would inhibit some response modes. Unfortunately, PATCHES-III was limited to 50 elements at that time and no practical means of avoiding symmetry modeling was available. The resulting symmetry model solution is essentially a 3D laminate solution with interlaminar stress gradients distorted at the origin by the symmetry boundary conditions. However, the force-deformation behavior of the laminate is represented reasonably well and several interesting conclusions can be drawn from the symmetry solution.

3.1 PROTOTYPE MODELS

A schematic of the idealized disbonded laminate analyzed in this study is shown in Figure 4. The disbonded region is at the center of a square

Figure 4. Disbonded Laminate Schematic Using Diagonal Symmetry

laminate between plies five (-45°) and six (0°) . The region is circular with a bubble shape whose profile is given by

$$Z_3 = t_p(1+\cos r\pi/R)/2$$
 (3.1)

where t_p is a ply thickness and the maximum radius is R = 1.27 cm (0.5 in.). Note that this shape is tangent to the adjacent bonded region and corresponds to an elastically warped surface. A catenary shape would correspond to inelastic fiber damage at the boundary of the disbonded region. The laminate is 15.24 cm (6 in.) square and uniformly compressed 0.01524 cm (.006 in.) in both the e_1 and e_2 directions. At the loaded edges, the normal displacement component, u_3 , is restrained to zero. The disbonded plies [-45/45/0] are unbalanced and after their separation, the remaining plies $[0/45/-45/0_2]$ are also unbalanced. As in the unbalanced three-ply laminate analyzed by Pagano, there will be stretching-twisting coupling that must be considered in selecting a symmetry model. It is also important to examine the inplane force changes caused by a disbond to assist in preparation of the ply-by-ply model of the laminate.

A small two element model was used to examine interply force changes when a -45° ply and a 0° ply disbond locally. The prototype model, Figure 5, consists of a -45° ply and a 0° ply in one quadrant of the laminate (7.62 cm) loaded by a uniform strain ε_{11} = 0.001. To simulate the disbond, the two elements were disconnected at node 8 corresponding to the center of the laminate. The two elements were type LLL and the nodal forces at the interply corners were used to measure the effect of the disbond. These are shown in Figure 6 and indicate only a small constraint force is relaxed by a disbond at node 8. Note, however, that the effect is to increase the transverse load in the 0° ply which carries most of the load associated with the applied ϵ_{11} strain. It is obvious that a larger change will occur if either nodes 5 or 7 are cut instead of node 8 which is analogous to a disbond at node 8 in a +45/0° layup. Results from this case, Figure 7, do show a larger change, but it reduces the transverse load in the 0° ply. The directional dependence in stiffness produces a directional dependence in the effect of a disbond under any given load. In this case of a circular disbond, Figure 4, under biaxial load, it appears that interply constraint forces will vary around the perimeter with relative maximums or minimums every 45°.

 $u \cdot e_1 = 0$ on Faces 4-8-5-1, 13-12-9-5 $u \cdot e_1 = 0.03$ on Faces 3-7-6-2, 7-11-10-6

Figure 5. Two-Ply Disbond Prototype Model for Forces

Figure 6. Interply Forces: [0/-45] Uniaxial Load

Figure 7. Interply Forces: [0/45] Uniaxial Load

Next, a three-ply [0/45/-45] laminate model was used to examine out-of-plane warping under inplane loading of the unbalanced disbond material. Each ply was modeled with CCL elements, and the dimension of the square model was made equal the radius of the disbond. Under uniaxial load there is elastic coupling between stretching and twisting that caused large out-of-plane displacements because of the low bending stiffness of a three-ply laminate (the plies are only 0.01778 cm thick). The stresses, strains and deformations of this [0/45/-45] laminate are all either asymmetric or symmetric about axes at $\pm 45^{\circ}$ to axes e_1 , e_2 , Figure 8. These results and the [0/45] constraint force results indicate diagonal symmetry rather than Cartesian symmetry should be used in modeling force-deformation behavior of the disbonded laminate.

Another observation from the unbalanced prototype models was the extremely slow convergence of the conjugate-gradient solution procedure. The membrane response accounts for 99.7 percent of the potential energy and this result is converged in less than N cycles. However, the low energy out-of-plane bending response required almost 4N cycles to converge with little change to principal stresses or strains. Note that the interply normal forces are two orders of magnitude smaller than the inplane forces. The models were changed to CCC elements to check for purely numerical ill-conditioning and the same slow convergence was observed. No solution to the pathological computational behavior caused by weak out-of-plane coupling was found.

3.2 LAMINATE FINITE ELEMENT MODELS

The dimensions of the laminate were specified to insure no coupling between the displacement boundary conditions and deformations in the vicinity of the disbond. The laminate is square of width 15.24 cm (6 inches) with a disbond radius of 1.27 cm (.5-inch) between plies five and six, Figure 4. The plies are graphite-epoxy of thickness 0.01778 cm (0.007-inch) with their nominal elastic properties as given in Table 8. The stacking sequence for the laminate is $[0,45,-45,0_2,-45,45,0]_T$ with the disbond between a 0° ply and a -45° ply. The edges are loaded by imposing a uniform inplane displacement of 0.00762 cm (0.003-inch) which produces biaxial compression.

A control model of the laminate was constructed using the same mesh in the Z_1, Z_2 plane as in Figure 4, but with only four plies $[0,45,-45,0]_S$ through the half thickness. The purpose of this model was to provide beforeand-after data for comparison with the disbonded results, in particular the

UNDALANCED LANIMATE

Unbalanced Laminate Bending Displacements Figure 8.

ELEMENT SET= FACE SET=

TABLE 8. GRAPHITE-EPOXY NOMINAL ELASTIC PROPERTIES

E ₁₁ = 137.90 GPa (20 msi)	ν ₁₂ = 0.3	G ₁₂ = 4.83 GPa (.7 msi)
$E_{22} = 9.31 \text{ GPa } (1.35 \text{ msi})$	$v_{13} = 0.3$	$G_{13} = 4.83 \text{ GPa } (.7 \text{ msi})$
$E_{33} = 9.31 \text{ GPa } (1.35 \text{ msi})$	$v_{23} = 0.3$	$G_{23} = 4.83 \text{ GPa } (.7 \text{ msi})$

internal forces. At the same time the control model shows the magnitude of the interlaminar constraint forces caused by the use of diagonal symmetry, Table 9. The forces F_2 should be exactly zero if the interlaminar deformations are zero at the center of the laminate. Instead, a large self-equilibrating pair of forces occur between the 0° plies and the $\pm 45^\circ$ plies. These forces distort the interlaminar stresses at the origin. It should be noted that F_2 sums to zero between the $\pm 45^\circ$ and the use of diagonal symmetry for these plies is consistent with material symmetry axes.

TABLE 9. BONDED LAMINATE CONSTRAINT FORCES THROUGH THE THICKNESS AT r = 0

	$Z_3 = 4t_p$	$Z_3 = 3t_p$	$Z_3 = 2t_p$	$z_3 = t_p$	$Z_3 = O_p$
NODE	49	50	51	52	53
Fl	54.98 N	100.44 N	102.00 N	100.22 N	50.18 N
F ₂	0.	43.41 N	0.	-43.41 N	0.

The control model also demonstrates that even the small biaxial strain ($\epsilon \cong 0.1\%$) imposed at the edges of the panel is sufficient to buckle the laminate elastically. An engineering check was made using isotropic simply supported plate formulas with the stiff direction properties. This calculation indicates the laminate will buckle at $P_1 = P_2 \cong 2000$ N, while the applied load is P > 10,000 N. The exact solution for buckling of a laminated anisotropic plate [10] would be lower because the small number of plies accentuates the bending-stretching coupling. It seems likely that the disbond will reduce the buckling load even further or possibly cause a large deflection stability problem in a laminate this thin, T = 0.142 cm (0.056-inch).

3.3 DISBONDED LAMINATE RESULTS

The effect of the disbond on the interlaminar force distribution is quite small and the effect on bending deformation is quite large. The centerpoint initial displacement caused by the disbond is $0.5 t_n$ before any load is applied. The centerpoint elastic displacement after loading to a biaxial strain of only 0.1 percent is an additional 0.4 $t_{\rm p}$, Figure 9. In other words, a unit imposed displacement (biaxial) in the plane of the laminate produces almost a unit normal displacement at the center of the laminate. This result suggests the disbond will initially lead to a stiffness critical failure rather than a stress failure. The reason for this behavior seems to be the extremely low bending stiffness which produces large out-of-plane deformation when the disbond couples the membrane and bending displacement response. It is important to note that the potential energy change between the bonded and disbonded cases is less that one milli Joule, Table 10, which corresponds to an energy release rate of less than 1 N/m. In contrast, the critical energy release rate for an edge delamination, Reference 11, is will over 100 N/m for an 11 ply graphite-epoxy laminate.

TABLE 10. DISBONDED LAMINATE ENERGY CHANGE

		Potentia	l Energy	
Bonded	3.958455 Jo	oules	(35.03528	inlbs)
Disbonded	3.958069 Jo	oules	(35.03186	inlbs)

The small redistribution of internal forces is evident in Table 11 which shows the center point constraint forces through the thickness. Note that the forces at nodes 53 and 54 are summed when the disbond is closed. Note also that the force at node 53 in the bonded model must be added to node 52 for comparison with the disbond results. This is because only one element was used for the two center plies, Figure 4, in the disbond model. A check of the force changes through the thickness was also made at r = R, Table 12.

To a large extent the symmetry boundary conditions inhibit in-plane redistribution and to some extent interlaminar normal force changes. Considering the large normal displacements, Figure 9, one might expect an

Figure 9. Normal Deformations in the Plies Adjacent to the Disbond

TABLE 11. DISBONDED LAMINATE CONSTRAINT FORCE CHANGES THROUGH THE THICKNESS AT r = 0

		Bonded			Disbonded		
Node	z ₃	F ₁	F ₂		^Z ₃	F ₁	F ₂
49	4t _p	54.98 N	0.	N	4t _p	44.54 N	1.01 N
50	3t _p	100.44 N	43.41	N	3t _p	103.68 N	45.75 N
51	2t _p	102.00 N	0.	N	2t _p	105.69 N	22 N
52	tp	100.22 N	-43.41	N	t _p	160.78 N	-46.58 N
53*	0	50.18 N	0.	N	-t _p	112.41 N	90 N
54					-1.5 t _p	43.62 N	-41.33 N
55		(Symmo	etric)		-2.5 t _p	90.67 N	3.22 N
56					-3.5 t _p	89.49 N	38.57 N
57					-4.5 t _p	42.46	1.43 N

*Node 53 is at $Z_3 = 0$ in the bonded laminate case.

interlaminar normal force to occur at r = R. As the data in Table 12 show, only a small increase in the small interlaminar normal force occurred at node 41. A possible explanation is that the symmetry boundary conditions at the center prevents nodes 53 and 54 from moving relative to each other in-plane as they probably would in a complete solution. If such deformations occur, they would create transverse shear gradients in-plane and equilibrium would require a normal stress gradient in the thickness direction,

$$\sigma_{31,1} + \sigma_{32,2} + \sigma_{33,3} = 0$$
 (3.2)

The magnitude of the spurious F_2 force at node 54 suggests this deformation could be significant and would certainly increase the energy release rate. However, it would have to increase by a factor of 100 before the delamination would propagate if the data in Reference 11 apply. This uncertainty can only be resolved by analyzing a complete model without the assumption of symmetry conditions.

TABLE 12. DISBONDED LAMINATE CONSTRAINT FORCE CHANGES THROUGH THE THICKNESS AT r = R

		Bonded			Disbonded	
Node	z ₃	F ₁ = F ₂	F ₃ *	z ₃	F ₁ = F ₂	F ₃
33	4t _p	12.18 N	0. N	4t _p	14.01 N	0. N
35	3t _p	74.54 N	±0.56 N	3t _p	75.17 N	±0.07 N
37	2t _p	68.29 N	±1.12 N	2t _p	69.10 N	±0.14 N
39	^t p	33.09 N	±0.84 N	t _p	33.13 N	±0.93 N
41	-t _p			-t _p	32.16 N	±1.49 N
43	-2t _p	(Symme	tric)	-2t _p	67.28 N	±0.84 N
45	-3t _p			-3t _p	73.04 N	±0.34 N
47	-4t _p			-4t _p	12.19 N	0. N

 $^{{}^{\}star}\mathsf{F}_3$ forces are self-equilibrating interlaminar forces.

The interlaminar stress results in keeping with the force results show only small changes in their distribution. On a percentage basis, the largest change occurs in the bottom ply where the small σ_{LT} shear stress is doubled. A plot of this stress component around the disbond at r=R, Figure 10, shows relative maximums and minimums at $\pm 45^{\circ}$ as expected. The use of symmetry boundary conditions also caused local distortions at the origin in the stress results that make their magnitudes questionable. However, these conditions affect the bonded and disbonded cases equally.

Figure 10. Bottom Ply Shear Stress Changes

4. LAMINATE IMPACT ANALYSES

At low velocities impact damage can be modeled as a quasi-static response problem using Hertzian contact pressures in most cases. This approach is used in the present study, and Greszczuk, Reference 12, gives an excellent account of the method and its rationale. The only analytic results available are for the elastic half space problem which was recently solved for a transversely isotropic material, Reference 13. One effect of transverse isotropy shown graphically in that paper is a shift of the maximum Von Mises stress from the impact centerline to a radius approaching the contact radius. The significance of this stress parameter for a composite is dubious, but it does indicate a trend of increasing transverse shear below the contact radius, which also occurs in the present results.

The disbonded laminate analysis problems caused by symmetry displacement boundary conditions led to the use of a full 360 degree finite element model for the impact problem. Another factor in this decision was the earlier PATCHES-III sandwich panel impact analysis [6] which also showed spurious constraint forces between the 0° and 45° plies on the centerline of a double symmetry model. In order to model a full 360 degrees, ply-by-ply, the program was modified to allow several hundred solid elements. Unfortunately, the computer budget available was sufficient to analyze only a 32 element model after all computational problems were resolved. These results, however, provide the first in-depth picture of the asymmetric interlaminar stress gradients that occur in a thick laminate impacted off-center. More detailed models were prepared for future analysis and these are in an appendix to this report.

4.1 THICK LAMINATE COMPOSITE RESPONSE

A 48 ply graphite-epoxy laminate supported between two rigid spars is shown schematically in Figure 11 being impacted by a steel sphere. The impact point is close to a spar and in this problem a contact force of 4448 N was specified. Considering the large number of plies in this problem, not all plies can be modeled for any given analysis. This practical consideration becomes even more critical when symmetry conditions cannot be used. First a variable property 3D laminate model was used to determine the bending deformations in the vicinity of the impact site. This analysis used a large but finite width strip to avoid boundary condition effects, Figure 12. The 3D

laminate analysis produced large transverse shear stresses at the impact site approaching the bending stresses in magnitude. Laminate force-deformation properties were modeled using the $C_{ij}^{\star}(\xi)$ formulation derived earlier, Table 13. As these data indicate, only the off-diagonal coupling terms vary appreciably through the thickness.

LAMINATE: [±45/0₂/±45/0₂/±45/0/90]_{2s}

GRAPHITE-EPOXY

Figure 11. Thick Laminate Impact Schematic

-33-

TABLE 13. PARAMETRIC CUBIC THICK LAMINATE PROPERTY MODEL*

	$C_{ij}^{*}(0) = C_{ij}^{*}(1)$	$C_{ij}^{*}(1/3) = C_{ij}^{*}(2/3)$
C11	72.622	71.650
C12	21.712	14.906
C13	2.999	2.910
C14	2.427	-0.807
C22	24.173	36.887
C23	2.379	2.468
C24	2.427	-0.807
C33	9.432	9.432
C44	22.091	16.279
C55	3.771	3.771
C66	3.744	3.744
C66	3.744	3.744

^{*}Stiffness in GPa units (1 Psi = 6894.757 Pascals)

4.2 IMPACT SITE MODEL

The composite laminate displacement response for element number one, Figure 12, provided boundary conditions for the impact site model shown in Figure 13. The contact radius was determined using both the Greszczuk [12] equations and the Dahan and Zarka [13] equations. The latter have typographical errors that were reconciled using the limiting case of an isotropic half-space to yield

$$r_0 = \left[\frac{3FR}{2} \left(\frac{\delta_1 - \delta_2}{2} + \frac{1 - v^2}{E} \right) \right]^{1/3}$$
 (4.1)

where δ_1 and δ_2 are lengthy algebraic functions of the half-space flexibilities S_{ij}^* . Substituting the laminate S_{ij}^* in these expressions gave

$$\delta_1 = -8.06 \times 10^{-12} \text{ m}^2/\text{N}$$

$$\delta_2 = -68.09 \times 10^{-12} \text{ m}^2/\text{N}$$

The remaining terms in Equation (4.1) are the force F = 4448 N, the sphere

Figure 13. Impact Site PATCHES-III Medel

radius R = 6.35 mm and the elastic constants E = 206.84 Gpa and ν = 0.3 for the sphere. These data produced a contact radius of r = 1.134 mm. The Greszczuk equation for contact radius

$$r_0 = \left[\frac{3\pi}{4} FR \left(k_1 + k_2\right)\right]^{1/3}$$
 (4.2)

also uses the $\mathbf{S_{i\,j}^{\star}}$ to compute related coefficients $\mathbf{k_{1}}$ and $\mathbf{k_{2}}$ which are

$$k_1 = 1.4004 \times 10^{-12} \text{ m}^2/\text{N}$$

 $k_2 = 19.8173 \times 10^{-12} \text{ m}^2/\text{N}$

producing a contact radius of 1.122 mm. The smaller radius was used to model the impact site so that $T/R\cong 5.65$.

Several disastrous attempts at analyzing the impact site model, Figure 13, were made using CCC elements for the upper plies and CCL elements for the subsurface laminate model. These attempts never quite converged and the deformations were highly distorted. After considerable effort it was determined that the model had pathological stiffness discontinuities in the thickness direction that were easily removed once found. At the impact site the elements through the thickness must be either all CCC or all CCL to avoid this condition. When the two element types are mixed under impact loading conditions, the CCC elements deform as if they were pressed against a rigid boundary. After resolving this modeling dilemma, excellent results were obtained using all CCC elements.

4.3 INTERLAMINAR IMPACT STRESS RESULTS

It is important to keep in mind that the present results are for a $\frac{small}{s}$ sphere impacting a $\frac{thick}{s}$ laminate, $\frac{t}{R} \cong 5.65$, with sufficient energy to generate a contact force of 4448 N (1000 lbs). The resulting stress-strain gradients are quite high in the upper ply group, Figure 14, especially in material coordinates. Note in particular that the second ply, a - 45, has larger fiber stress gradients in the thickness direction than the top ply, although the magnitudes are slightly lower. The centerline Cartesian shear strains, Figure 15, show rather dramatically that the use of two symmetry planes would have produced large shear errors along the centerline. Interesting, the chordwise shear strain, ε_{23} , is very small indicating one plane of symmetry

Figure 14. Centerline Fiber Stress

Figure 15. Cartesian Centerline Shear Strains

in the response. If the loading were not in the transverse direction, or if the laminate were unbalanced, even this symmetry condition would not exist.

Consider next the stress distribution around the perimeter of the impact site. The fiber stresses at the top surface as a function of circumferential position, $\bar{\sigma}_{11}(\theta)$, are shown in Figure 16. The tension stresses are confined to a thin layer at the free surface and are probably not a good indicator of actual fiber stresses. When the fiber stresses are averaged through a single ply thickness, Figure 16, the values are all compressive. In either case, the distribution is periodic in θ with a period equal π . The distribution of transverse shear stress in material coordinates is also periodic, Figure 17, but with period equal 2π . The two shear stress components in this figure, $\bar{\sigma}_{13}$ and $\bar{\sigma}_{23}$, were averaged over one ply thickness, the second ply. This ply has the maximum transverse shear in the laminate and it occurs at the impact perimeter not the centerline. Similar behavior was observed by Dahan and Zarka in zinc and cadmium during elastic contact with a steel sphere. These materials also had their low stiffness in the direction normal to the impact surface, but they are not as anisotropic as the laminate material. It is also interesting to note that the two shear stress components $\bar{\sigma}_{13}$ and $\bar{\sigma}_{23}$ are phase shifted by 90° in the circumferential direction. The in-plane ply shear stress $\bar{\sigma}_{12}$ in Figure 18 shows a quasi-periodic distribution of period equal π that is similar to the fiber stress distribution. However, the structural response of the laminate appears to be superimposed on the elastic halfspace response. This would explain the $\bar{\sigma}_{12}$ peak nearest the center of the laminate being slightly smaller. There is also a subharmonic component that may be caused by the composite solution boundary conditions applied to the impact site model. To explore this second order effect would require additional analyses. A summary of the ply material stress maximums is provided in Table 14.

It is interesting to observe the similarities and differences in a 3D laminate solution and a 3D elasticity solution in the impact area. The deformations at the top surface are compared in Figure 19 and show very similar shapes. The maximum 3D laminate displacement is about 85 percent of the elasticity result; however, the laminate strains are an order of magnitude too low at the top surface. The elasticity solution using laminate properties was much closer but still low. The normal strain in this case is quite close, but the in-plane strains are one-half to one-third the ply strain results.

Figure 16. Fiber Stresses Around Impact Perimeter

Figure 17. Transverse Shear Stresses Around Impact Perimeter

Figure 18. Ply Shear Stress Around Impact Perimeter

TABLE 14. THICK LAMINATE PLY STRESS SUMMARY

	σμ	αT	^σ LT	σ _{TT}
σ/P _o	2.05	.99	.28	28
Node	1	1	22,62	22,62

Figure 19. Thick Laminate Local Bending Deformation Comparisons

5. CONCLUSIONS AND RECOMMENDATIONS

A systematic approach to modeling complex interlaminar stress gradients has been developed and applied to two graphite-epoxy laminates. The approach uses variable property 3D finite elements that correctly model force-deformation behavior and constant property 3D finite elements that accurately model ply shear strains. Analyses for this class of problems are difficult, but considerable progress has been made toward solving the computational and modeling issues encountered.

- To model composite laminate force-deformation behavior with 3D finite elements requires, in general, properties that vary through the laminate thickness.
- Interlaminar deformations are <u>not</u> symmetric in a balanced symmetric laminate under symmetric in-plane loads.
- Interlaminar deformations have <u>one</u> plane of symmetry in a balanced symmetric laminate under normal Hertzian contact pressure.

Analysis of the disbonded laminate force deformation behavior indicates a large out-of-plane displacement response occurs without singificant internal force redistribution. Comparison with a bonded laminate control model also indicates very little energy is released by the disbond. The new CCL finite element worked well in this application and should be an effective new tool for analyzing interlaminar force-deformation behavior in the vicinity of defects. It is interesting to note that more accurate results can be obtained on reanalysis by simply changing the element specification to CCC as in the P-Version of the finite element method [14].

Analysis of the thick laminate impacted off-center by a small sphere indicates the maximum transverse shear occurs below the surface in the second ply for the $[\pm 45/0_2/\pm 45/0_2/\pm 45/0/90]_{2S}$ layup. This maximum occurs at the contact radius and both transverse shears in material coordinates have a sinusoidal variation around the perimeter. The fiber stresses also vary sinusoidally, but with one-half the period of the transverse shears. Only the inplane shear stress shows a noticeable effect of the impact site being off-center. The edge closest the spar boundary has slightly higher ply shear. This also occurs in the ply shear strains with the relative increase being

on the order of 10 percent. These results were obtained after several analysis failures caused by mixing CCL and CCC elements in the thickness direction. Based on these results and those from the disbonded laminate the following additional analyses are recommended:

- Analyze the disbonded laminate without any symmetry assumptions.
- Analyze the disbonded laminate with twice as many plies, $[0/\pm 45/0_2/\pm 45/0]_{2S}$, with the disbond in the same location.
- Analyze the impact site with the focus on the bottom ply group.

Now that accurate modeling techniques for finite element analysis of interlaminar behavior have been developed, a combined test/analysis study of the effects of defects is recommended. It would be possible to evaluate energy release rate and possibly other parameters as a measure of how large a delamination can become before unstable propagation takes place. Pre-test analyses could be used to define the critical load conditions and to help locate instrumentation. In order to facilitate this work it would be desirable to interface the PATCHES-III program with a composite material synthesis program [15], [16] for pre- and postprocessing of the finite element results. This would allow basic ply properties and layup data as input and automate the recovery of ply stress-strain data from composite stress-strain results. It would also allow Tsai-Wu, Hill and other failure criteria to be applied to the PATCHES-III results.

6. REFERENCES

- 1. Spilker, R. L, S. C. Chou, and O. Orringer, "Alternate Hybrid-Stress Elements for Analysis of Multilayer Composite Plates," J. Composite Materials, Vol. 11, pp. 51-70, 1977.
- 2. Wang, A. S. D. and F. W. Crossman, "Calculation of Edge Stresses in Multi-Layer Laminates by Sub-Structuring," J. Composite Materials, Vol. 12, pp. 76-83, 1978.
- 3. Pagano, N. J., "Stress Fields in Composite Laminates," AFML TR-77-14, Air Force Materials Laboratory, 1977.
- 4. Pagano, N. J., "Exact Moduli of Anisotropic Laminates," <u>Composite Materials</u>, Vol. 2, edited by G. P. Sendeckyj, pp. 23-44.
- 5. Stanton, E. L., "A General Three-Dimensional Computational Model for Nonlinear Composite Structures and Materials," AIAA Paper No. 77-360, in Proceedings AIAA/ASME/SAE 18th SDM Conference, pp. 9-22, 1977.
- 6. Stanton, E. L. and L. M. Crain, "Application of PATCHES-III to the Three-Dimensional Response of Laminated Composites," NADC Contract N62269-75-C-0438, Final Report, 1975.
- 7. Kibler, J. J. and S. N. Chatterjee, "Development of Minimechanics Model for 3D Carbon/Carbon Materials," Materials Science Corp., Report TFR 7510, 1975.
- 8. Williams, J. G., et al., "Recent Developments in the Design Testing and Impact-Damage Tolerance of Stiffened Composite Panels, NASA TM-80077, April 1979.
- 9. Williams, J. G., et al., "Low-Velocity Impact Damage in Graphite-Fiber Reinforced Epoxy Laminates," Presented at the 34th Annual SAMPE Conference, New Orleans, 1979.
- 10. Whitney, J. M. and A. W. Leissa, "Analysis of a Simply Supported Laminated Anisotropic Rectangular Plate," <u>AIAA Journal</u>, Vol. 8, pp. 28-38, 1970.
- 11. Rybicki, E. F., et al., "An Energy Release Rate Approach for Stable Crack Growth in the Free-Edge Effect Delamination Problem," <u>J. Composite Materials</u>, Vol. 11, pp. 470-487, 1977.
- 12. Greszczuk, L. B., et al., "Investigation of Brittle Fractures in Graphite Epoxy Composites Subjected to Impact," USAAMRDL-TR-75-15 (AD-A012-269), May 1975.
- Dahan, M. and J. Zarka, "Elastic Contact Between a Sphere and a Semi Infinite Transversely Isotropic Body, " Int. J. Solids Structures, Vol. 13, pp. 229-238, 1977.

- 14. Babuska, I., et al., "The P-Version of the Finite Element Method," Washington University, Report No. WU/CCM-79/1, May 1979.
- 15. Chamis, C. C., "Computerized Multilevel Analysis for Multilayered Fiber Composites," Computers and Structures, Vol. 3, pp. 467-482, 1973.
- 16. Stanton, E. L. and L. M. Crain, "Advances in Parametric Cubic Modeling for Finite Element Data Generation," Proceedings Second World Finite Element Conference, Bournemouth, England, pp. 386-496, 1978.

APPENDIX

The PATCHES-III input data for the two laminates analyzed in this report and data modifications necessary to analyze three additional impact cases, Table A-1, are provided in this appendix. The structural response model that provides displacement boundary conditions for the impact site model is included for each case. Also, a schematic of a more detailed model of the impact site that includes the entire 12 plies in the basic repeating ply group is provided.

TABLE A-1. PATCHES-III LAMINATE IMPACT CASES

Case	Impact Site	Sphere Radius	Contact Radius	Status
1	Z1 = 1.91 cm	0.635 cm	1.12 mm	Analyzed
2	Z1 = 1.91 cm	2.540 cm	1.78 mm	Modeled
3	Z1 = 10.16 cm	0.635 cm	1.12 mm	Modeled
4	Z1 = 10.16 cm	2.540 cm	1.78 mm	Modeled

PATCHES-III INPUT DATA
DISBONDED LAMINATE MODEL

\$ \$													135						
#5545555555555555555555555555555555555	••	94 : 94 : 94 :	7	# ·	***	4444	+ + + + + + + + + + + + + + + + + + +	14141											
\$\$\$\$\$\$\$ \$\$\$\$\$\$\$	\$ \$ \$ \$	59 Y		A 4	A 6	444	***							,					
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8888		*** *********		A	24.4		3 5 5 5 5 5 5 5 5						:					
					*****	3.5												*	
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	55353	\$5.4.4.4.8 \$5.4.4.4.8		***	7	3 9 9 8	******	91111111111			,		\$5 33						
\$ \$ \$		₩.				8888	444444	9114			5.5	£ \$	4		TES				
\$	\$\$\$\$	5 to	6666666	******	***	\$5.55	*******************	55555555555		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	38 88	\$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	************		SSOCIA				
\$555 \$555 \$555	\$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$	*****	·							25		\$5		- X	U	•		
\$\$\$\$ \$\$\$\$ \$\$\$\$	\$ \$ \$ \$	****	************	***********	2555		•			\$55555555555555555555555555555555555555	1.,		1 44 4		0 P M E	VERSION 8.20	. . .		
\$ \$\$\$\$\$\$\$\$\$\$\$ \$ \$\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$					555		7		\$\$\$\$\$\$\$\$	5.5	55			EVEL	VE			
~ ~ ~	\$\$\$\$\$\$	59 59 59 59 59 59 59 59	35155	8888	11.54	\$\$188	8 8 8 8 8 8 8 8 8 8 8 8	\$\$\$\$\$\$\$		•	\$ 25		15 53		Y P E 0				
33555555555555555555555555555555555555	8 8 8 8	8 9 9 10 9 9 10 9 9				\$115	\$ \$ \$ \$	\$1155		\$	100	\$\$ \$\$ \$			P R O I O I				
\$1555555 \$1555555 \$1555555	5535555	1 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	23222328	15515 5155	\$\$3\$ \$\$33	\$\$ 1155		\$5555555	1	\$3.5	-						
\$5555 \$55559 \$15155	25035			•		\$ \$	V 1 V 3	15535									į		
\$551455555555 \$5515555555555	*****	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$5555	\$ \$ \$ \$	\$3555	\$\$\$\$\$	\$\$\$\$	2111											

er:

						'	NADO	-801	35-60)						
						 										-
											!					
													:			
7																
72/22/77											i ·	:				
10.32.16.																
10.2											! !					
		ļ														
	S	İ														
I A	PISPURD LAMINATE CASE SYMPTEP BOUNDARY CONDITIONS	. !													, 	
CASE CONTEGL DATA	ATE CASE	ļ												,		
CASE CON	TEPY BOI	11.06														
	TITLE - DISPOND LAMI SUBTITLE - SYMMITPY B	. ELFPE	TYTHING													! !
	TITLE . SURTITE	SDC = 1 CHKPNT OUTPUT	EVE. 3	1												

CAPD	F1ELD-14	FTF1 0-2.FT	IELD-2,FI	F1 D-4,	E1610-5.	ETE! N.A. CTC! C.7. CTC		•	
					**	18 18 18 18 18 18 18 18 18 18 18 18 18 1	77-77-77-77-77-77		
1-	CPOE3	1	10	50	.	6 0 -	+C3		
2-	+01	• 100	7	2,2	2		+63		
1 1 n	6.0 AU +	* 100	16	50 20 20	D 4	. m			
5-	CPDE3	-	23	24	8		+63	•	
	+C3	*100	7.7	25	9	c,			
- 5	CP 0F 3	4	25 5	2¢	2 *	о г	* O+		
-0	CPORT		22	28	1.2	11	+6.5		
16-	13.53+ +C2+	ננו	52	92	10	1 6			
11-	CP DE 3	¥	29	30	14	13	+0.6		
12-	+C.F.	*1))	27	28	12	11			
13-	CP.) E3	2	31	35	16	15	+5+		
16-	+6.7	•133	29	36	14	13			
15-	C P D F 3	3 0	35	36	20	19	92+		
-1:	+ (8	*100	en c	34	18	17		ž.	
10.	52023	,	136	2 2	36	1.5	7		
1 0	604	•	ים מי	0 0	2 6	۲ ر ۲ ر	0137		
14.	+0.16	* 201	, ,) a	* 6	2.1	2124		
21-	CPDE3	11	17	42	26	25	+011	, and the same of	N
22-	+011	*100	3.0	0,	. 42	- E			IA
23-	CPDE3	12	43	44	28	27	+012		DQ
-42	+012	*100	4.1	4.2	92	25			-8
-62	CFDF3	13	45	7,	30	29	+013		30
26-	+613	•133	43	44	28	27			1 3
-22	CPDE3	7	7	85	32	10	+014		3 5 -
- 4Z	+114	* 		4	30	29			-6
20-	+616	12	007	207	30	22	+6.12		0
31-	CPDE3] e	, 12	51	r 00	0 00	+616		
32-	+016	*133	0.6	200	9 en	35.			
33-	CPDE3	17	52	52	40	68	+017		
34-	+617	*100	51	51	38	37			
35-	C POF 3	18	53	6,3	24	41	+018		
(+118	* 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.	25	0	5 .	•		
- 36	C P C P S	161	υ, υ,	50	. .	m) r	+019		
30-	CPOFA	20.	5.6	5 4	44	44	+620		
-64	+ 120	* -		y ur	2 4	n (1			
-	0.00.53	212	, 6	, 6	· 4	7 (+(2)		
42-	+C21	*100	56	56	46	2.4			
43-	PP2PAT	-	~	7					
-44-	HP2PAT	2	-	2					
45-	HP2PAT	m	•	643					
				•				•	

٠,

CAPU	F1510-14	• FIELD-2	-2+61513+5-	eFIELD-4e	FIELD-34	FIELD-6+	FIELE-74	#FIELD-»#FIELC-6*FIELE-7*FIELD-8*FIELD-9	1510-9.	• F 1 F L D - 1 Q				
-2.5	HE 2PAT	s	Ł	ď)										
1 d	TADODA	5		9										
1 1 5 7	HFZFAT	~ a	e 0 ∾	~ 0										
1	700	· o	· •	c o										
52-	10	16		10										
1,47	HFOFAT	-	12	11										
-45	4P2F4T	12	13	12										
- 16	HF2PAT	13	16	13										
-95	TA9C4H	14	54	14										
-15	HF2PAT	15	16	15										
5.5-	HF 2PAT	16	17	16										
10%	HP2PAT	17	18	17										
-03	HESEAT	ď	22	ď										
£1-	HPZFAT	19	5 2	15										
-29	HP2PAT	20	21	20							,			
63-	HP2PAT	21	25	21										
-43	MATOR		_		1									
45-	*10X-1	20.0F6	1.35E6	1.3566	0.3	0.3	0.3	0.7E6	0.7E6+M1	+#1				
-44	+ 27	17.6	- 1			- 1								
-19	Z-Xc.L	~	767107	•	.707107	.707107	°	•	•	-W+				
1 2 4	+ F - V - T - T - T - T - T - T - T - T - T	D• [·	,	,					•		•		
- 60	17-77		I.	1	1	4	34	2.	2.	+ M11				
-0.2	+ 1111	.6471	· ·	1.06477	•	-1,547	•	06477		,				
-1.2	++12 ++12	.45333	3 1.	,646447	.t.46447	.353553	1.	.646447	646447	+ 12 12				
73-	PT2X-13		35355	35.3553	. 353553	0.0	35 35 53	353553		1 1 3			-	
-42			.582342	58234	.582342		582342-	582342-	こうかくない・	1				
75-	-21	-1.		-2	-2.))) ((1)	2000	2					
76-		1.5586	6 6.	1.00759	٠	1.55866	9	1.00759						
-11	FT-22	-,35255	1-1	646447	646447		· ~		.646447+877	4×22				
78-		.55105	_	1.00759	4C075	55	1.55866		1.00759	,				
-62	- 53	•0	-,353553	.353553	353553	3	.353553	.353553	.353553	+M23				
-08	+1123		.551068	.5510e8	.551068		.551068	.551068	.551068	•				
81-	F72x-31	.028	.028			.028	• 623			F#31				
82-	,													
1,	F18X-32	.021	.021			.021	.021			+M32				
34-	- 1													
92-	#TRX-33	. (14	.014			.014	.014			+333				
-98	E :: +													
~	#T3x-34	.007	2000			200.	200.			+ 1434				
98-	+1:34													
-64	F12X-35	(07	097			- 2001	007			+M35				
-00	4 4 4					1								
-116	41-x-36	(.)4	614			014	014			+ M36				
	70.0													

the second of the second of the second of the second of the second of the second of the second of the second of

PAGE 3	.EIELD-5.EIELD-6.EIELE-7.EIELD-8.EIELD-9.EIELD-10	7E M+	+138	.000356000366+#41	000366000366+442	000366000366+843		.C00366000366+M44								**			80															
	JELD-6.FIELE-7.FIE	021021	.028028	- 001 -	0140	5 0210		5 - 0280 -	11	32	33	34	36	37	3.8	31	33	34	35	3.7	- 60	31	32	0 3	35	41	43	7,						
ARDS	F1 0-4	1		0003660003660105	0603660603660175	000344000346024		000366-,000366-,031	_	11 21		11 21		11 21			. ~		12 22		4					13 . 23		13 23	U.A.	45.0	0.04-		140.	1 1 1 1 1 1 1 1
T A C	FIELD-2	021	-,026	007	0140	0210		0230	æ	a au	60	an a	ď	æ	4	ec o	c ec	60	aı c	4 0	•		മാര	c eo	6	മാര	200	60	4	~	, ,		-	
A 0	FLD-1+ElELD-2+FIELD-2+FI	120 /	028	6105	0175	-,6245		(315	-	, ~	8	- ₹ (r	3		23	ക മേ) 	111	12	14	24		1 e	- a	22	19	212	25	4	~ •	n 4		n ·	n 4 r
1 O H	1-01311	MT-X-37	F12Y-38	#18X-41	+#41 FFRX-42	* TO X-43		입;	35 F G	PATCH	PATCH	# T L V A	PATCH	PATCH	PATCH	10 F	PATCH	PATCH	PATCH	PATCH	PATCH	PATCH	H 2 L 4 d	PATCH	PATCH	PATCH	PATCH	PATCH	PF0E3	PP0E3	P P D F 3	00053	D 10 10 10 10 10 10 10 10 10 10 10 10 10	9 9 0 E 3 0
•	CARD	4 9 9	95-	-26	96-	101-	102-	163-	105-	106-	107-	108-	110-	111-	112-	113-	115-	116-	117-	110-	120-	121-	122-	124-	125-	126-	128-	129-	130-	131-	133-	126-		1361

																		ľ	ΙΑί	þ	-8	01	35	5-6	5 b														
	!																																						
E.C. D=1.0																																							
<u> </u>		· -																																					
141468-0													_	_														_	- -		_							_	
1141402											17	T.		20	1	2 6	26	25	26	2 3	~ ~	, m	3.5	e c	3,6	3 6	3.6	en :	. 4	1,4	4.3	75	4,	.	3	20	55	5.	5.3
-11114												2	m	4 K		م د	- 00	a	01	7	77.	7 7	17	. .	2 2	21	22	53	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26	2.7	23	50	2 6	34	: 01 : 10	36	37	38
9-01314											ო	4	a	91	۵	o u	10	11	12	13	* •	1 =	19	٠ د د	32	1 67	24	52	0 °	28	59	g	31	36	36	3.7	35	39	40
1E1D=54	-45.	-45.	45.	0	ċ	45.	424	• • •	47.	0	19	20	21	25	12	7 2	2 5	2.7	28	20) (1 6	35	35	300	o o o	60	17	7 4	2.7	45	40	47	D C	55	5.1	7	25	25
											m	-	וח	m n	-	n 17	, (7)	٦,	m (,	u	יאן נ	æ	en e	J ~	ന	3	י נא	43 (M)	6	m	-	m	T, (-	m	~	m	æ
	~- - -	-	-	1	~ ·	- , ,	-	- -	-		-		~	۸. «		و. ۱	•	5	ς.		o 1°	. ~	Œ)	.		· :>	2	_	·		C)		· .		7	•	2	~	7
11452-														Λ 1 Γ																					l		-		
11111	10	12	13	14	<u>.</u>	בי	1:	2 5) Y	2	<u>~</u>	7			-	, -	10	10	Ξ:	7	-	, <u>~</u>	10	Ξ,	1=	Ä	٦	7		ř	7.	٦	~ ;	-	Ĭ	7	7	<u> </u>	ř
. 4	F 7 C 4 3	200	101	FFDF3	7 . C : 11. (1 C	60000	0000	F P.	PP)F3	C2038	51.22	25 520	55529	SDC23	02000	5555	\$5020	5005	25520	00000	\$1.020	80020	02000	\$5555 \$5555	21.020	55.520	06538	50020	\$5020	S DC 50	55555	SEC20	00000	21020	SE720	62.70	S F C 20	80080
= 				-			į					1																											
	-36- 40-	-	2-		ļ	ļ.,		! ! - a		J	-	77	-	5.41	1:	۲,	ا. ا	16	٥.	1	, ,	, ,	-6	1 1		1	ئ	<u>.</u>	1 1	-7	7	اً،	_ 1		5	-1		Ļ.	1

ARD 185- 196-										
185- 186- 187-	£1510-14	FIELD-24	FIELD-3	FIE	LD-4.FIELD-5.	FIELD-6.E	1516-74	FIELD-R.FIE	LO-5.FIELD-6.FIELE-7.FIELD-8.FIELD-9.FIELD-10	
187-	C220S	10	18	a.	53	41	3.0	52		
187-	\$6520	10	e	3	53	42	40	5.2		
	2003	0 .	<u>.</u>	m	υ, υ,	m .	4 .	3.		
1 68 1	2002	2 5	7 6	~ ~	υ υ 4	* u	7 7			
190-	35020	10	20	3	26	46	7.5	55		
191-	C2J35		2.1	17)	57	25	4.5	56		
192-	\$1,020	10	7	"	7		46	5.6		
193-	SPCZ	10		411	004243	_	ċ	-	+21	
194-	12+	~ ;								
195-	2343	97	1	421	- 003		٩			
196-	2745	10	-	163	003		ċ			
197-	S PC 2	<u>ن</u>	-	441		004243	•	-	+82	
-45	+52	7								
-661	SPC2	10	7	414	604243	~	ċ	7	+53	
200-	£\$+	~								
201-	5262	10	-	424	003		d			
-202	SPC2	10	-	467	003		•			
203-	SPC2	10	-	777		004243	•	, 1	+2+	
204-	75+	7								
205-	SPC2	10	2	411	004243	_	•		+ 5.5	
-902	+85	-								
207-	S PC2	10	7	421	-, 003		q		***************************************	
208-	SPC2	10	2	431	003		•			
-60-	SPC2]C	~	441		004243	ċ	_	+26	
210-	+2.4	1								
211-	SPC2	10	m	411	004243		ċ	-	+27	
-212	25+	_								
213-	SPC2	10	~	N	•		ó			
214-	SPC2	10	m	431	003		•			
215-	S PC2	7,	m	•		004243	•	-	+ \$ 8	
-917	+24	7			ď					
-/1/	SPCZ	9 1	•	411	004243	_	•	-	+89	
-81.0	7.4	- ;	•	•	,		•			
220	37.6	3	٠,	774	- 003		9			
-022	27.6	0.0	•	-	-003		.	,	,	
-122	77.0	3 '	s	T 8 5		£ \$2 \$00 · -	•	-	+210	
222	7167	١			١°					
-622	7745	3 r	n	114	1.004243	•	•	-	+211	
225-	421T	` ;	•	,			•			
224-	27.6		7	17,	- 6003		90			
1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22.5	2 :	n 1	76.			• •	•		
- / 22	27.6	<u>,</u>	v	141		004243	•	-1	+812	
-827	4512	/			ď					
-622	SPCS	10	•	411	004243	_	•	-	+513	
-062	+513	7								

		!								NADO	-801	35-60				1	!	
1						!						!						
												: [
					į													
I																		
2 2																		
0 1 1 1 1 4 5			+214	+515	İ	+516												
-01213					į													
8-01			_	-	ļ	-												
-7.FIG					ı													
7 1 1 1		• d		đ	ن ن	İ												
0[-0]][4-5-0[5][4-8-0][4][4-2-3][4][4-9-0][5][4-7-0][5][4			004243			004243												
0 - 4 - 0	7)		004243	E. W.													
-4.6 161		003		- 00	E33									<u>.</u>			,	
	1	431	145	11	421	741								 				
, ,		د د	w.	7	7 2	_	0											
	1						1400											
, 1,1,1		2 2		3	. 01	01		V										
7	7	2.23	등 4	5.2	7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25		T A C								1		
		1 1 1 1 1 1 1 1 1		4		3 0	4	E.										
c		,		2			. 1								!			
3	1		234	5	737-	23,	24.	24:					<u>.</u>		1			

l. i

PATCHES-III INPUT DATA LAMINATE IMPACT STRUCTURAL RESPONSE MODEL

Case 1. (See Computer Listing)

Case 2. Change gridpoints 9, 11, 13, 14, 17, 19, 21, 23.

GRID, 9, ,-0.356-2,-0.356-2 GRID, 11, 0.356-2,-0.356-2 GRID, 13, ,-0.178-2,-0.178-2 GRID, 15, 0.178-2,-0.178-2 GRID, 17, ,-0.178-2, 0.178-2 GRID, 19, 0.178-2, 0.178-2 GRID, 21, ,-0.356-2, 0.356-2 GRID, 23, 0.356-2, 0.356-2

Case 3. Change gridpoints 5, 7, 29, 31 and redefine element number 11 data.

GRID, 5, , 10.16-2,-2.0-2 GRID, 7, ,-10.16-2,-2.0-2 GRID,29, , 10.16-2, 2.0-2 GRID,31, ,-10.16-2, 2.0-2 PATCHQ,11, 7, 31,25, 1 CPDE3 ,11, 7, 31,25, 1 +C11 ,CCL, 8, 32,26, 2 SDC10 , 10,11,123, 7, 8,32,31 SDC10 , 10,11, 2, 7, 1, 2, 8 SDC10 , 10,11, 2, 7, 1, 2, 8 SDC10 , 10,11, 2,31,25,26,32 SDC10 , 10,10,123, 5, 6,30,29 (delete) SDC10 , 10, 8,123, 1, 2,26,25

Case 4. Combine the changes for Cases 2 and 3.

LAMINATE STRUCTURAL RESPONSE MODEL FOR CASES 3 AND 4

IMPACT SITE STRUCTURAL RESPONSE MODEL FOR ALL CASES

1			NACC-801 35-60
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		35555555555555555555555555555555555555	
		\$\(\text{1111}\) \text{1111}\)	### ### ##############################
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \] A-14

CASE CONTROL DATA

TITLE & NADE LAWINATE IMPACT
SHRITTLE & 48 PLY MODEL & VARTABLE PROPERTIES
SDC & 10
LOAD & 5
TIME & 17
CHMENT & FLEMENT,CG
DUTPUT
EVERYTHING
REGIN PULK

<u>.</u>	r Bue 1	_	13	11	10	ī.		10+
	-0+	ה היי	1.0	£.	٥ <u>٠</u>	1.6		
•	CPDF3	~	<u>.</u>	<u>-</u>	۲۷	-		~ ∪+
•	در	ב ב	1.6	20	77	~		
	E3045	m	17	2	23	<u>-</u>		50+
	£2+	ננר	8.	25	34	20		
~	CPUES	7		21	11	-		+C4
į	704	ככר	0	22	<u>α</u>	14		
•	EBU63	v	o	13	-15	11		+03
-01	£24	ວວ	10	14	4-	~		
-=	EBUGO	۰	-	53	27	M		+C&
12.	9U+	ננו	12	34	4~	3		
13.	CPDF3	^	7	25	27	23		+04
14-	. +67	บ	22	24	K ()	34		
15.	CPRES	Œ	-	25	~	D		8J+
16-	£0+	ננו	∼	5	25	10		
17-	CODES	•	_	0	-1	m		٥ <u>٠</u>
18.	6U+	ננו	م	10	~	7		
10.	CPDES	<u>e</u>	,. M	27	5	ī		+010
-02	+010+	บี	4	æ ~	30	•		
21.	CPDE3	=	ſ.	50	Ē	^		+01
		ָטַ.	•	0		ac		
23.	C 1 2 1 1	- (6.		2-0-5		
•	6510	P ^ (0.0		٠.		
. S.	GLAS	r		Tu:	1.555-2-0	<u>.</u>		
- 62	0145	٠,		7 ·	~	V :		
				2	•	2 = 72		
	2 F	<u></u> !		•	•	2 - 7		
•	GRID	<u>~</u> :		:	•	ر ان		
30-	GLAS	-2		-		2-2		
31.	6910	-1		:		2-2		
32-	GRID	0		•		12-2		
33.	01 60	7		~		2-7		
30.	GPID	23		2		2-7		
35.	6743	25		6.	•••	ý		
36-	6810	77		6		٠.		
370	GRID	50		8		٠		
30.	GRID	-			••	~	,	
39•	PATCHO	_	13	17	•	ĩ		
40-	PATCHO	۸:	ĩ	19	23	-		
41.	PATCHO	 -	17	7	1 0	6		
42-	PATCHO	7	•	2	7	1		
43-	PATCHO	~	۰	m	ī	=		
99.	PATCHO	•		P)	27	m		
45-	PATCHO	^	~	5	7	2		

A-16

47-	PATCHO	0		o	==	M					ī	
- C 7	DILLE	<u>-</u>	m	24	0	r						
-69	PATCHR		2	م	31	~						
20-	ZQI	_		.6339A-2	ú							
51.	7 Q I	~:	~	.63398=2	Ņ							
-25	ZQI	₽ 0	'n	-63198-2	νī					•		
53-	7 Q 1	7	7	.63398-2	Ņ							
54.	201	r	S	.63398	ķ							
55-	2 Q 1	•	•	.63398-2	Ņ							
26.	ī dī	1	7	.63398	ي							
57.	NGI	8 0	Œ	.6339R-	Ņ							
58.	2 Q I	œ	0	63398-2	Vi							·:
20.	ZOI	10	10	63398-2	Ç							·•·
-09	₹			.63398-2	Ų						:	
6 1•	PPDE3	-	-									
•59	PPDF3	~	-									
63-	PPNES	₩									٠	
64-	PPDE3	0										
65-	PPDE3	ស										
-99	PPDE	•		٠							,	
67.	PPDE3	7	-									
-89	PPDE3	c c	-									
-69	PPDE3	•	1	_			-					
. 70-	PPDE3	 2			:							
7.	PPOES	-	, =1.									٠.
- 72-	MATC		3	-d			ا با با است	; 4 ;; 4 ;• i	,	4	;	••
73•	T-XX-1	72.622+9	ᇟ	6+666.26	24.173+92	+92.37	2.370+0 0.	432+0	22.091+00. +M1	.00		
74-	 2 +	•	3,771+9	•	3.744+	7.2.0	27+90		•	7.427	~×+0+	
.5	~ * +		•	. •				,				
100	170X	71.650+	15.9064	915,906+92,910+9	36.887+92	+05.468+0	•	0.432+0	16,279+90,	06		
77.	M 2 4	·	3,771+9	•		08.	2 6 4 7		•	6+408	7H+ 6	
. 18.	3 X +		,					. :	7			
	MAX TO	_	_	⊶.	-	=-	<u>-</u> -			_	Q X +	
000	4 4 4	_	_	_		-	_		_	-	Œ ¥	
	E 2 +	~ :	~	∾ :	N)	Ņ	~		~	~ ·	υ . Σ +	
950	ت +	n.	N.	∩ i	N.	Λ:	~		r.	~ i	+	
	2 +	۸.	~	N	N	~	~ ∵		~ .	∩ ∵	14. I	
	12 A +	~	~	N	N	~	~		~	~	¥.	
65 •	¥ 1	_	_	-		-	-	•		_	5 +	
9	9 +	_	_	_	•	-	-		_			
. 87	30010	5	•	ر. م		pr)	7		 ~ i			
98•	3 00.10	-	c_	~	m	r	•		2			,
80-	9rc10	10	10	~:	27	6 2	ř	0	28			
•	9DC 10	01		~	'n	^	40		y. 9			
-:6	90010	10	11	~	<u>ر</u>	F	<u></u>		30			
45-	SPC 10	10	11	123	7	ec	32	•	33			

BULK DATA CAROS CONTRACTOR CONTRA

FTELN-1,FTELD-2,FIELD-3,FIELD-4,FIELD-5,FIFLD-6,FIELE-7,FIELD-8,FTELD-9,FIELD-10

CARD

. A-17

998. SDC10 10 8 995. SDC10 10 8 995. SDC10 10 8 995. SDC10 10 8 995. SDC10 10 995. SDC10 995. SDC10 10								
	•	~ ≀	25	27	82	9		
	æ	123	-	n:	\$	52		
	<u>α</u>	0,	14	œ '	50	4	,	i
	c *	•0	٠.	•	-		•	+01
	<u>-</u>	- •	c.	c	0	c	•	
	-		-1.576+9	6+9				
	700							
PARAT	- 5116							
FRD DATA								

PATCHES-III INPUT DATA LAMINATE IMPACT IMPACT SITE MODEL

- Case 1. (See Computer Listing)
- Case 2. (See Computer Listing Page A-29 for gridpoint changes).
- Case 3. Same as Case 1 with new structural response input data.
- Case 4. Same as Case 2 with new structural response input data.

88888	55558	\$55	358	5.5	5.5	ø	•	S		53	s
\$ \$ \$	588		•	*	₩,	8	8.8	8 8 8 8	555	5538	5889
555555	888888	99 99	\$555	9 99	888	3 2 5	888	5555	555		555555
	999999	888	5555	19 SP	\$55555	555 5555555	599	8888	99 PG	88888888	8888888888
38588888	***********	5666 56666	85858	556666	88888888	8888888	888888	36888	88888	************	88888888
S & S	8839	* 555	•	€9					8558	8888	999
HENERGY HENERGHOUSHING PAGE	358585858	35.35.85.85.85.	35.55	8888	55555555	5555555	88888	5555 5	5555	*888888888888	888888888888
3388	S 5 5 5	8 5 5 5 S	£ 8 % 8	8888	555555	888888	\$\$888 \$	80 br>80 80 80 br>80 8	69 69 69 69	8 88888	9999
***	4. 大块树	4.44.69	5555	SO SOSS SOSS	\$588888	96666666	38888888	89 FF FF	88888	8888	8888
88888	564664	333333	S. 50 50 50						23.9	5955	\$ 8.9
SKEEPEN KRASSENKESKEEKKE RAKESSEK E	**** ********	44444	供收的价价	2552	99.99.99 99.99.99.99	5555	90 W 15 W 15	5 5 4 5	5555	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	888888
**********	じょうけいかいかんじゃい	50.00	8. J. J. S.	14 Si Si Si	50.55	S & & &	\$ 150 M	\$ # \$ b	8888	8883	55.55.55
25331	5555	36341	5.4 5.5	**	5555	8484	***	****	\$ \$ \$ \$	5355	8888
3 3 5 8	215	2 1 1 2 2	5555	\$ \$ \$ \$	A 5 5 5	2555	163535	S 4 6 5 5 5	38.58.5	5555	S S S S
125555555	**********	£25333 \$3535	53555 5555	55555555555	888888888888888888888888888888888888888	2448	**	***	\$55	\$	** SS

				•
<u>ب</u>	19 19 19	99. 45 9		99
نة. م	S: S:	50 SS		
4 :	99	88 88	55 55 55	88 88
5.5	8.	THE SECOND SECON	Š	5555 55
	4	65 66 66 66 66 66 66 66 66 66 66 66 66 6	60	e:60 69.60
•	SSESSE:	\$8888888888888888888888888888888888888	883638	妈妈妈妈妈妈妈妈

VERSTON 8.17C

The second secon

からい こうかん ちんかん おおおと しいちゅうかん かいかいかん

CASE CONTROL DATA

10.35.07. 78/11/700.20

3

TITLE B.INTEPLAMINAR STRESS GRADHENT ANALYSIS HODEL SUBTITLE B 48 PLY LAMINATE

RESTART S COULTPUT S ALL COULUME S 1 ESTRAIN S 1 ESTRAIN S 1 ESTRAIN S 1 ESTRAIN S 1 ESTRAIN S 1 ESTRAIN S 1

→ A-2

CARD	F 16 L.D.	1,5156	-2,FIttn	-3,FIFLn	44,6761.0	-5.FIFLD-6.FIELE-7.	FISTN-1,FIFLN-2,FIFLN-3,FIFLN-4,FIFLN-5,FIFLN-6,FIFLE-7,FIFLN-8,FIELD-9,FIELN-10
<u>.</u>	r Profit	2	^	~ı	2 2	95	10+
~	10+	<i>.</i> :		-	21	81	1
, p.,	CP36.3	17	~	~	۲. ع	25	×0×
7	₹ 0\$		-	- 1	7	21	• • •
	CPDF3	61	~ ⋅	~ .	29	~ : t	٠ •
•	£ 0.3	į	(- (• •		
	C BOE S	-	N.	№ -	N .	2	3)
	- C	;	f	- ;	91		304
	CPUES ON	~	ù •	V.		1.30	
10-	5 i		- ·		ואן נאני		454
-	S HOOL	77	₹;		7 -	v .	
-2	+ 12		₹ :	- (- r		F. J. +
	5 2040	0	٠	C .	701	U : -	
10.	+0.4	•	7 7	(C	161	191	« ·
		101		u .			
91	t (1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1		6		181		
17	CP053	25	,	י רא	5	50 t	*) *
- q -	6Ú+		n:	ഷ	22	25	
10-	CPDE3	C 7	m	m	7 7	23	+010
-02	+010		~	~	₹		
21-	CPNE 3	29	m	m	63	M 3	+611
-22-	+0;1		n:	~	5.5	42	
23-	CEDES	A2	m	₽°T	ec M	Fi O	+612
-02	+0.12		٨	~	€.	62	
252	CPRES	122	83	23	123	183	+613
-92	+C13		82	22	122	182	
-75	CPRE3	1 42	23	43	143	123	+01#
2A-	+C16		22	42	142	122	
- 62	CPDE 3	162	£ 7	63	163	143	+015
30-	+015		77	62	162	142	
31-	CPDE3	182	63	£0 €0	183	163	+016
32-	+016		62	82	182	162	•
31-	CPDE3	23	7	7	24	78	+C17
34-	+617		۳	m	23	E. C.	
35-	CPDES	5 7	3	₹.	77	54	+C18
36-	+C18		* 1	m	7 7	23	
37	CPDES	63	7	7	64	77	+619
38.	+019		P -7	m	63	43	
30.	CFDE3	A 3	7	7	3 C	79	+C20
-07	+055		M	M	83	63	
-17	CPDES	123	3.0	72	124	184	+621
42-	+C21		A 3	23	123	183	
43•	CPUES	143	54	77	144	124	+622
- 44-	+622		23	£ 5	143	123	
. 45	CPDE3	163	77	79	164	100	+623
90	+023		M	6	163	143	

A-22

•									
47.	CPDE3	ō	96	8	164				÷
40	+624		89 15	183	163	:			
67	CFOE3	24 55	π	25	85				<u>ب</u>
20-	+625	7	7	54	94				
\$1.	CPRF3	44	ın	\$ 7 7	25				ပ္
52.	4C>4	27	₹	47	54			•	
53.	CPDE3	50	ıν	65	2.5				÷
54.	+627	3	4	79		•		:	
55.	CPDE3	84 5	U ri	85	65				÷
26•	+C28	2	ø	76	79				
57.	CPDE	124 85	25	~	185				<u>ب</u>
58-	+629		20	124	164				
20.	CPDE3		45	145	125	í			Ļ
09	+€30	2	777	144	124	•	. ?		.4
•1•	CPNE3		65	165	3 4 5				Ļ
-29	+C 31		79	164	144				
53-	CPUES	184 65	85	185	165				<u>ပုံ</u>
64.	+032	9	4	184	7				
65 •	GRID		•	٥.	398-				
-99	GRID	~	•	0	078-				
67-	GRID	•	•	•	0758				
-89	S#10	3	0	0	115				
-69	381 0	S.	و ا	0	0	,	;		
70-	6R10		7920	7.0	-3,63398				
71-	GRID	20	1920	7-6-	-3.62078-				
12.	6810 6810		366.		į.	. 4		,	,
1 2 4	2 6	37 W			- 7 2 2 2 2 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 1 2 2 2 2		•		
14.	1 0 0	nn	2000	,	-2.6440A				
76.	CERTO	(22)	7760		7.62078				
17.	GRID	123	2240		~				
78•	GRID	124	2240	2.2	-2.58115-				
79.	GR 10	125	.2240	2	-2.0		:	,	:
90-	GR TO	141	-,2240	-2	-2,63398-				
18	GRTD	142	,224	5. 5.	2.6				
82.	GRID	. F7	224	2.	-2.60758-				
63.	GR 10	100		2.	-2,58115-				
90	GR 10	145		-2 .224	0.2		:		
92.	GRID	161	-,2240	-2-,224	-2,63398-				
9 9	GR 70	162	222	-2-,224	-2,62078-				
- C	9 10	163	0.000	422. 224	0-2-60758-2				
				725 - 25	2.0				
•	01.45	181	2240	2- 224	-2.63398				
-16	0149	182	224	2.5	2.6207				
92-	67.00	141	1000	17.00 -0.	40759				

A-23

CAMD	F 1617-			- 3, F 1 P L D					* [FILES "FILES FILES FI	, :
* 6	GRIO	786		ru.	-2-,2240-2,	-2,58115	~-			
9.0	0.810	185		~	411-2-,224	0-2-0				
• y 5	LINEPC	_	82	-						
-96	1 12/500		A	ر بر						
97.	LINEPC		? Q	83					•	
-86	LINEPC		A S	7 6						
• 66	PATCHR						•	•06	•	
100	PATCHR		~				0	•06	••1	
101	PATCHE		1 ~1				•0	•06	•	
162	PATCHE		7				•	06	m	
103-	PATCHR		-				00	180	~	
100	SATING.		^				00	180	m	
	PATCHE		, p-1				06	800	. 1-7	
40	PATCHE		7				0	80	199	
107-	PATCHE		· -				200	270		
	DATCHE		۰ ۸				. 00	7.0		
	37.						. c	0.00	, ,,,	
	07774		7 =				- C	210	, , ,	
•	1 C		: •						T: #	
• • • • • • • • • • • • • • • • • • • •	PA-CHE		(S / V	500	^ 1	
112.	PATCHR		~ ;				570	360	,	
113.	PATCHR		μ.				270	360.	.	
114-	PATCH2		7				270.	360.	•	
115-	PATCHO		182	122	121	181				
-91	PATCED		183	123	122	182				
117-	DIJLYd		184	124	123	183				
1.8-	PATCHE		185	125	124	184				
-61	PATCHO		12 2	142	17.	121				
120-	PATCHO		123	143	142	122				
121-	PATCHO		124	144	143	123				
122•	PATCHG		125	1.5	104	124				
123-	PATCHG		142	162	161	141				
124-	PATCHO		143	163	162	142				
125•	PATCHO		144	164	163	143				
126-	PATCHO		145	165	164	144				
127-	PATCHG		162	182	181	161				
128-	PATCHO		163	183	182	162				
129-	PATCHO		164	180	183	163				
130-	PATCHO		165	185	184	164				
131•	PATCHO		~	8	81	-				
132-	PATCHO		·	ec Pri	8 2	~				
133•	PATCHO		7	7	83	۲,				
134-	PATCHO		'n	85	7	4				
:35•	HPSPAT	121	121	21						
136-	HP2PAT	141	141	4.5						
137-	HP2PAT	161	161	61						
138-	HP2PAT	181	£	 au						

			7	í		:	j		
***	- VADAR	166	166	7					,
140	HP SPAT	142	142	5			4		, S ₁
- 1 - 1	TP2PA7	162	162	62					
	T 4000	4 4 3	0	A					
1 45		9 6		4 6					
	•	165	165	Ç					
- 77	n	143	143	₽					
145.	•	163	163	63					•
1.46	1	183	183	8		,			•.
Ň	•	124	124	20					
•	4	100	177	77					
0	4	•	144	7 4					
•		7 1	7 5	* =					
- 20	<	о.	0	9			•		,
-121-	œ Q.	~	101				• 0	•	•
	Z C	41	101				0 1	08)
	Œ	61	101				80, 2	70.	m
154-	ar o. I	81	101				.0	.09	M
	0	0	107				0		10
	. 0	1 0			•		•	- 0	\$. :
	E (¥ (200			٠,	- (
157.	or D.	29	102				20.	.0.	•
158-	ar Q.	ģ 23	102	:		•	.0.	•09	m
150	OZ Q. I	23	103				۰	•	~
160-	œ Q I	M	103				•	80.	M
-14	0	4	101				000	70.	
2 4	2 0				*			•	•
	K C	7 1		•		•	•	•	°
103	T D	54	104					•	· .
164	T DE	70	104	:	The second second	1 . 4544 (
165-	œ Q I	64	104				80.	• 0.	•
166-	œ 1	7 E	104				D. 3	99	m
167-	SOCI	0	121		121	221	. 0-4	0	
168-	\$0C1	0	122		122	222	0-4	ċ	ċ
169.	3001	01	123		123	223	0-4		
170	3001	10	124		124	224	0=4		ė
1710	30C1	0	141	-	141	241	1.0-4	5.0	1.0-3
172-	SDC1	10	142		142	242	0 - 4		6
173-	3001	0.0	143		1 4 3	243	7=0		ė
174-	SDC 1	0	144		777	544	0-4		ė
175-	1000	0	161		161	261	1 7-0		ė
176-		-			162	640	0=0	ċ	ċ
177			7 4		7	26.4	7 7 0		
						240) (
•	200	2 .							,
ř	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	> .	107		0	100	7 4 0	•	•
-091	1000	0	201		201	202	7 7 7		5
-101	1000	0	163		183	283	7=0	ė	
182	-	20	184			284	-		
163*	PP0E3	2	~		45.0				
164-		-	~						

A CASE A SECTION OF THE PROPERTY OF THE PROPER

FIELDal, FIELDa2, FIELDa3, FIELDa4, FIELDa5, FIELDa6, FIELE a7, FIELDa9, FIELDa10

CARDS

DATA

8 L L K

CARD

'A-25

-
- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
44 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
124.05+9 0. 124 124 162 162
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

FIELD-1,FIELD-2,FIELD-3,FIELD-4,FIFLD-5,FIELD-6,FIELE-7,FIELD-8,FIELD-9,FIELD-10

CARD

	ିଆ ନ ଓ	L. W. STD. ATT	T A C	& O × 0			i. !			PÀGE 6
CARD	FIELD-1	1,FIELD-	2,FIELD-3	FIELD-4	FIFLD=5	,FIELD-	LD-6,FIELE-7	FIELD	-8,FIELD-9	FIELD-10
233.	DATAG			121	172	122	-,2715	123	•	+0611
234	+0611	124.		125	2651	141	•.2226	142	-, 2225	+0612
235-	+0612	103	.,2223	177	. 222	145	216		\$25	_
236.	+0613	162	.,2228	163	225	164	222	165	210	-
237	+0614	181	-,2717	182	~	183	271	791	7	_
238-	+0615	185	-,2652	. (
239.	PAT	~		182	1.00	12	122	*		
-0#Z	PAT	121	, ~	182	181	121	122		•	
241-		721	.	182	181	121	122			
-202		25	_	183	182	122	123			
243-		122	٦	183	182	122	123			
-005		222	r	183	182	122	123			
245-		23	_	184	183	123	154			
-9#2		123	~	184	183	123	124			•
247-		223	m	181	183	123	124			
248		7₹		8.2	187	124	- 25 - 25			
-652		124	~	185	184	124	125			
-052		224	m	185	184	124	125			
251-			-	122	121	141	142			
5 25-		141	.; ~!	122	121	141	142	٠		
253*		241	b √1	122	121	141	142			
254-		42	-	123	122	142	143			
-552		4	~	123	122	142	143	•	•	-
256-		242	 M	123	122	747	143			
257-		 	=	124	123	143	777			
258•		143	7	124	123	143	777			Section of the Management of the
- 52		243	M.	124	123	143	144			
- Se 0 -		7 7	. .	125	124	707	145			
261	DIVID	100	~ ₽	15.	7.5	777	2 2 2 2 2 2			
26.20		7 7	n •	n n	 		14.			
2646	. 4	1	→ ∩	2 5	7 9	101	000			
2654				27	141		2 0	•	?	
266	-		٠	101	1 42		1.0			,
267-	PAT	162	۰ ۸	14.	142	162	163			
268-	-	262		143	142	162	163			
-692	4	63		144	143	163	104			
-078	_	163	~	144	143	163	104			
-175	-	263	M	177	143	163	164			,
272•	_	64		145	144	164	165			
-	_	164	~	145	104	164	165			
270-		ā	س	145	144	164	165			
275-	-	91		162	161	181	182	•		
276-	DPATO	191	~	162	161	181	182	7		
277-		2.8.1 1.0.1	P 1	162	161	191	182			
276-	p 4	82		163	162	182	183			

A-27

280-	O X Y	FIFLD-1	FIFLO	,FIFLD-3,	FIFLD-4	,FIELD-5,	FIELDA	FIELE-7	, F.I.E.C 8,	, rieto.	fIFLN-1,FIFLN-2,FIFLN-3,FIFLN-4,FIFLN-5,FIFLN-6,FIFLE-7,FIFLN-8,FIFLN-9,FIFLN-9,FIFLN-10-10
DPATO 262 3 163 162 183 DPATO 183 1 164 163 183 184 DPATO 183 2 164 163 183 184 DPATO 243 3 164 184 185 DPATO 3 165 164 184 185 DPATO 3 165 164 184 185 DPATO 1 1 1 41 21 81 DPATO 3 6 1 1 41 21 81 DPATO 4 9 10 1 41 21 41 21 DPATO 3 9 10 1 41 21 41 21 41 21 41 21 41 21 41 21 41 21 41 21 41 21 41 21 41 41 41 41	-612	FPAT	182	٨	163	162	182	183			
DPATO 43 164 163 183 184 DPATO 183 184 184 184 184 184 184 184 184 184 184 184 184 184 184 185 184 185 184 185 184 185 184 184 185 184 185 184 184 185 184 185 184 184 185 184 185 184 185 184 185 184 185 184 185 184 185 184 186 184 185 184 185 184 186 184 185 184 185 184 185 184 185 184 185 184 185 184 185 184 185 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 <td>280-</td> <td>OPATO</td> <td>282</td> <td>•~:</td> <td>163</td> <td>162</td> <td>182</td> <td>183</td> <td></td> <td></td> <td></td>	280-	OPATO	282	• ~:	163	162	182	183			
DPATQ 183 184 DPATQ 243 184 163 184 DPATQ 243 164 184 185 DPATQ 184 185 164 184 185 DPATQ 3 165 164 184 185 DPATQ 3 165 164 184 185 DPATQ 3 10 1 41 21 DPATQ 3 10 1 41 21 DPATQ 3 10 1 41 21 DPATQ 3 402809 745356 0 942809 745356 0 HXX=10 10 1 1 0 942809 745356 0 HXA=3 16 21 1 0 942809 745356 0 PLOAD 16 1 0 942809 745356 0 PLAD 1 2 1 0 942809 745356 0 PLAD 1 0 1 0 942809 745356 0 PLAD 1 0 0 0 0 0 0 0 PLAD 0 <td>221-</td> <td>DPAT0</td> <td>A 3</td> <td>_</td> <td>164</td> <td>163</td> <td>183</td> <td>184</td> <td></td> <td></td> <td></td>	221-	DPAT0	A 3	_	164	163	183	184			
CPATO 2M3 164 163 183 184 CPATO 84 165 164 184 185 CPATO 164 184 185 CPATO 165 164 184 185 CPATO 16 1 1 41 21 CPATO 2 10 1 41 21 41 CPATO 3 2 10 1 41 21 41 CATO 3 4 2 1 41 21 41 CATO 3 4 3 4 41 3 44 CATO 4 4 4 4 44 44 44 44 44 CATO 4	782-	DPATO	183	~	164	163	183	184			
CPATO AL 165 164 184 185 CPATO 184 2 165 164 184 185 CPATO 184 3 165 164 184 185 CPATCH 2 1 1 1 1 2 CPATCH 3 P 10 1 1 1 2 CPATCH 4 P 10 1 1 2 CATCH 3 P 10 1 1 2 CATCH 4 P 10 1 1 2 CATCH 5 P 10 1 2 CATCH 6 P 10 1 2 CATCH 7 P 10 1 2 CATCH 8 P 10 1 2 CATCH 9	243-	DPATG	E # C	'n	164	163	183	184			
DPATO 180 2 165 164 189 185 DPATO 280 3 165 164 189 185 DPATO 280 3 165 164 189 185 DPATCH 1 P 10 1 1 2 2 81 DPATCH 2 P 10 1 1 61 41 71 DPATCH 3 P 10 1 1 61 41 71 DPATCH 4 P 10 1 1 61 41 61 MTRX=10 1.0 .942809 .745356 0. 1.0 .942809 .745356 0. PLOAD 3 16 21 1 745356 0. PLOAD 3 16 41 7 -1.814+9 PLOAD 3 16 41 7 -1.814+9 PLOAD 3 16 61 3 -1.814+9 END DATA	284-	PATO	30		165	104	184	185			
DPATO 284 3 165 164 184 185 DPATCH 1	285-	OPATG	180	~	165	164	184	185			
PATCH 1 P 10 1 1 21 81 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	286-	DPATO		P 1	165	164	194	185			
DPATCH 3 P 10 1 1 41 21 41 21 DPATCH 3 P 10 1 1 1 61 41 41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61 61 61 61 61 61 61 61 61 61 61 61 61	287-	PATCH		۵	10	_	_	21	£		
DPATCH 3 P 10 1 1 61 41 DPATCH 4 P 10 1 1 6 61 61 MTRX=10 1,0 942809 745356 0, 1,0 942809 745356 0, HMXIO 1.0 942809 745356 0, 1,0 942809 745356 0, PLOAD3 16 21 1 -1,814+9 PLOAD3 16 41 2 -1,814+9 PLOAD3 16 61 3 -1,814+9 PLOAD3 16 61 4 4 -1,814+9 PLOAD3 16 61 4 4 -1,814+9	288-	OPATCH	^	۵.	10	•	_	41	21		
DPATCH 4 P 10 1 1 61 61 61 61 61 MTRX=10 1.0 .942809 .745356 0. +MTRX=10 1.0 .745356 0. +MTRX=10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	289-	DPATCH	₩	Q.	10	_		61	41		
MTRX=10 1.0 .942809 .745356 0. 1.0 .942809 .745356 0. +MX10 1.0 .942809 .745356 0. +MX10 1.0 .942809 .745356 0. PLOAD3 16 21814+9814+9 PLOAD3 16 61 3 -1.814+9 PLOAD3 16 61 3 -1.814+9 PLOAD3 16 61 4 -1.814+9 END DATA	-062	OPATCH	7	a .	10	-		10	61		
+MX10 1.0 .942809 .745356 0. 1.0 .942809 .745356 0. PLNAD3 16 21 1 -1.814+9 PLNAD3 16 41 2 -1.814+9 PLNAD3 16 61 3 -1.814+9 PLNAD3 16 61 4 -1.814+9 END DATA	291-	MTRX-10	1.0	.942809	.745356	•	1.0	942809	.745356	•	+MX10
PLOAD3 16 21 1 -1,814+9 PLOAD3 16 41 2 -1,814+9 PLOAD3 16 61 3 -1,814+9 PLOAD3 16 81 4 -1,814+9 END DATA	292.	OIXX+	0.	942809	.745356	•	0.1	942809	.745356	•	
PLCAD3 16 41 2 PLCAD3 16 61 3 PLCAD3 10 81 4	293-	PL CAD3		21	-	-1.814+9	•	•		,	
PLFAD3 16 61 3 PLMAD3 16 A1 4 END DATA	-762	PLOAD3	16	77	n:	-1,814+9	_				
PLMANS 16 A1 4 END DATA	295-	PLFAn3	- 4	÷.	PT:	*1.814+9					
END DATA	-962	PLAAN3	٥	A.1	7	-1.814+9					
	297-	END DAT	⋖								

PAGE

C	S DATA DIRECTI			c	0.0	c	1259-2-1259	259-2-,1259	259-2-, 1259	259-2-,1259	259-2-, 125	3560=2=3560	.1540-2-,3560	. 1560=2-, 3560	.3540-2-,3540	.3540=2=,3540	-,3560-2 ,3560	-,3540-2 ,3540	. 3560=2 ,356	-,3560-2 ,3560	-,3560-2 ,3540	-,3540-2-,3540	-3560-2-3560	-,3560-2-,3560	-,3560-2-,3560	-,3560-Z-,3560	3560-2-,3560	.3560-2-,3560	.3560-2-,3560	.3560-23560-	3560424,3560
	I	-	^	, ,	9	•	¥	7				~	N	N	N	Ň	4	J	4	4										è	ò
	⋖	~	~	-	~	~	-	R	~	2	à	2	2	2	ä	<u>-</u>	2	4	7	ä	2	~	E	ä	2	2	~	2	2	2	H

PATCHES-III SCHEMATIC LAMINATE IMPACT IMPACT SITE 12 PLY MODEL

The input data for this model are a direct extension of the 4 ply model with 32 finite elements increased to 88 finite elements. If the findings of the present report are used, then one plane of symmetry (e_1,e_3) can be used to reduce the number of elements. In this instance the topologically equivalent model would have 66 finite elements. To reduce this number further will require a change to the basic layout used in this report.

EMPACT SITE 12 PLY MODEL

DISTRIBUTION LIST

Government Activities

	No. of Copies
NAVAIRSYSCOM, (AIR-950D), 2 for retention, 2 for AIR-530, 1 for AIR-320B, AIR-52032D, AIR-5302, AIR-53021,	
AIR-530215)	9
AFFDL, WPAFB, OH 45433	
(Attn: FBE)	1
(Attn: FBS/Mr. L. Kelly)	1
(Attn: FBS/Mr. C. Wallace)]
(Attn: FBC/Mr. J. Wood)]
(Attn: AFML/MBM Dr. S. Tsai)]
(Attn: AFML/LTN Mr. R. L. Rapson)	ן ו
(Attn: MBC/Reinhart)	} 1
(Attn: MXA/Fecheck)	ı
AFOSR, Washington, D.C. 20333 (Attn: Dr. W. Walker)	1
	12
DTIC	12
(Attn: R. Allen-AWS/120)	1
NAEC, Lakehurst, NJ 08753	•
(Attn: Mr. D. W. Nesterok/Code 92713)	1
NASA (ADM), Washington, D.C. 20546	•
(Attn: Secretary)	1
NASA, George C. Marshall Space Flight Center,	•
Huntsville, AL 35812	
(Attn: S&E-ASTN-ES/Mr. E. E. Engler)	1
(Attn: S&E-ASTN-M/Mr. R. Schwinghamer)	1
(Attn: S&E-ASTM-MNM/Dr. J. M. Stuckey	1
NASA, Langley Research Center, Hampton, VA 23365	
(Attn: Mr. J. P. Peterson, Mr. R. Pride, and Dr. M. Card)	3
NASA, Lewis Research Center, Cleveland, OH 44153	_
(Attn: Technical Library, and M. Hershberg)	2
NAVPGSCHL, Monterey, CA 95940	•
(Attn: Prof. R. Ball, Prof. M. H. Bank)	2
NAVSEASYSCOM, Washington, D.C. 20362	•
(Attn: Code 035, Mr. C. Pohler)	1
NAVSEC, Arlington, VA 20360 (Attn: NSEC-6101E)	1
(ATTN: NOEL-DIVIE)	J
NAVSHIPRANDCEN, Bethesda, MD 20034 (Attn: Code 173.2, Mr. W. P. Cauch)	1
NAVCHIDDANDCEN Apparalia MD 21402	1
NAVSHIPRANDCEN, Annapolis, MD 21402 (Attn: Code 2870, Mr. H. Edelstein)	1
(Attn: Code 2870, Mr. H. Edelstein)	1
(Attn: Mr. F. R. Barnet)	1
NRL, Washington, D.C. 20375	•
(Attn: Dr. I. Wolack)	1

Government Activities (Continued)

	of oies
NAVAIDDEVCEN Waymington DA 19074	
NAVAIRDEVCEN, Warminster, PA 18974 (Attn: Major J. C. Lillie - 097)	1
CNR Washington, D.C. 20362 (Attn: Dr. N. Perrone)	1
PLASTEC, Picatinny Arsenal, Dover, NJ 07801	,
(Attn: Librarian, Bldg. 176, SARPA-FR-M-D and Mr. H. Pebly)	2
(Attn: Mr. A. Gustafson)	1
USAMATRESAG, Watertown, MA	,
(Attn: Dr. E. Lenoe)	1
osalesore, burnain, no Error	•
Non-Government Agencies	
Avco Aero Structures Division, Nashville, TN 37202	_
(Attn: Mr. W. Ottenville)	1
Batelle Columbus Laboratories, Metals and Ceramics Information Center, 505 King Avenue, OH 43201	1
Rell Aerospace Company, Buffalo, NY 14240	1
(Attn: Zone I-85, Mr. F. M. Anthony)	1
Bell Helicopter Company, Fort Worth, IX /6100	
(Attn: Mr. Charles Harvey)	1
(Attn: Mr. R. V. Cervelli)	1
(Attn: Mr. R. V. Cervelli)	
(Attn: Code 206, Mr. R. E. Horton)	1
Boeing Company, Renton, Washington 98055 (Attn: Dr. R. June)	1
Boeing Company, Vertol Division, Philadelphia, PA 19142	•
	2
Boeing Company, Wichita, KS 67210	_
(Attn: V. Reneau/MS 16-39)]
Drexel University, Philadelphia, PA 19104	ı
(Attn: Dr. P. C. Chou)	1
(Attn: Dr. A. S. D. Wang)	1
Effects Technology, Inc., 5383 Hollister Avenue, P.O. Box 30400,	,
Santa Barbara, CA 93105 (Attn: Robert Globus) E. J. DuPont Company, Wilmington, DE 19898	1
(Attn: Dr. J. Pigoiacampi)	1
Fairchild Industries, Hagerstown, MD 21740	
(Atin: Mr. D. Buck)	1
Georgia Institute of Technology, Atlanta, GA (Attn: Prof. W. H. Horton)	1
General Dynamics/Convair, San Diego, CA 92138	•
(Attn: Mr. D. R. Dunbar, W. G. Scheck)	2
General Dynamics, Fort Worth, TX 76101	
(Attn: Mr. J. A. Fant (Mail Zone-2844))	1

Non-Government Agencies (Continued)

	No. of Copies
General Electric Company, Philadelphia, PA 19101	
(Attn: Mr. L. McCreight)	1
(Attn: Mr. W. R. Benn, Mgr., Market Development)	1
School of Engineering & Applied Science, Materials Research Laboratory, Washington University, Campus Box 1087,	,
St. Louis, MO 63130 (Attn: T. Hahn)	1
University of Delaware, Mechanics & Aerospace Eng. Dept.,	•
Evans Hall, Newark, DE 19711 (Attn: Dr. R. B. Pipes)	1
Grumman Aerospace Corporation, Bethpage, L.I., NY 11714	
(Attn: Mr. R. Hadcock, Mr. S. Dastin)	2
Hercules Powder Company, Inc., Cumberland, MD 21501	
(Attn: Mr. D. Hug)	1
H. I. Thompson Fiber Glass Company, Gardena, CA 90249	
(Attn: Mr. N. Myers)	1
(Attn: Mr. N. Myers)	
(Attn: Mr. K. Hofar)	1
J. P. Stevens & Co., Inc., New York, NY 10036	
(Attn: Mr. H. I. Shulock)	1
Kaman Aircraft Corporation, Bloomfield, CT 06002	_
(Attn: Tech. Library)	3
Lehigh University, Bethlehem, PA 18015	•
(Attn: Dr. G. C. Sih)	1
Lockheed-California Company, Burbank, CA 91520	^
(Attn: Mr. E. K. Walker, Mr. Vaughn)	2
Lockheed-Georgia Company, Marietta, GA 30063	7
(Attn: Technical Information Dept., Dept. 72-34, Zone 26)	1
Vought Corporation, Dallas, TX 75222 (Attn: Mr. O. E. Dhonau/2-53442, C. R. Foreman)	2
Martin Company, Baltimore, MD 21203	2
(Attn: Mr. J. E. Pawken)	1
Materials Sciences Corp., Blue Bell, PA 19422	;
McDonnell Douglas Corporation, St. Louis, MO 63166	
(Attn: Mr. Harold Dill, C. Stenberg, R. Garret)	3
McDonnell Douglas Corporation, Long Beach, CA 90801	•
(Attn: H. C. Schjulderup, G. Lehman)	2
Minnesota Mining & Manufacturing Company, St. Paul, MN 55104	_
(Attn: Mr. W. Davis)	1
Northrop Aircraft Corp., Norair Division, Hawthorne, CA 90250	Ť
(Attn: Mr. R. D. Hayes, Mr. D. Stansbarger,	
Mr. R. C. Isemann, Mr. R. M. Veritte)	4
Rockwell International, Columbus, OH 43216	
(Attn: Mr. F. Kaufman)	2
Rockwell International, Los Angeles, CA 90053	
	1
(Attn: Dr. L. Lackman)	
(Attn: Mr. E. Sanders, Mr. J. H. Powell)	2

Non-Government Agencies (Continued)

	No. of Copies
Ownes Corning Fiberlass, Granville, OH 43023	
(Attn: Mr. D. Mettes)	1
Rohr Corporation, Riverside, CA 92503	
(Attn: Dr. F. Riel and Mr. R. Elkin)	2
Ryan Aeronautical Company, San Diego, CA 92112 (Attn: Mr. R. Long)	7
Sikorsky Aircraft, Stratford, CT 06497	ı
(Attn: Mr. J. Ray)	1
University of Oklahoma, Norman, OK 93069	•
(Attn: Dr. G. M. Nordby)	7
Union Carbide Corporation, Cleveland, OH 44101	
(Attn: Dr. H. F. Volk)]
University of Wyoming, Laramie, WY 82071	
(Attn: Dr. D. F. Adams)	i
Virginia Tech, Blacksburg, VA 24061 (Attn: Dr. K. Reifsnider)	3
Compositek Engineering Corp., 6925-1 Aragon Circle, Buena Park,	'
CA 90620 (Attn: Mr. J. V. Noyes)	1
Lockheed-California Co., Rye Canyon Research Lab, Burbank	•
CA 91520 (Attn: Mr. Don E. Pettit)	1
Villanova University, Philadelphia, PA 19085	
(Attn: Dr. P. V. McLaughlin)	1